doc/kishna.tex
changeset 333 50ec1ab32d2d
parent 331 65e104a2db8f
child 340 7cbd6395038f
equal deleted inserted replaced
332:78657bf06302 333:50ec1ab32d2d
     1 \documentclass[a4papre,12pt]{article}
     1 \documentclass[a4paper,12pt]{article}
     2 
     2 
     3 \usepackage[utf8]{inputenc}
     3 \usepackage[utf8]{inputenc}
     4 \usepackage[english]{babel}
     4 \usepackage[english]{babel}
     5 \usepackage{amsmath}
     5 \usepackage{amsmath}
     6 \usepackage{listings} % For listing code
     6 \usepackage{listings} % For listing code
   161 our game the Runge-Kutta method is used to calculate positions and
   161 our game the Runge-Kutta method is used to calculate positions and
   162 velocities of physics objects when we apply forces to them.
   162 velocities of physics objects when we apply forces to them.
   163 
   163 
   164 The mathematical formulation of the Runge-Kutta method:
   164 The mathematical formulation of the Runge-Kutta method:
   165 If we have an initial value problem of the form
   165 If we have an initial value problem of the form
   166 \begin{equation}
   166 \begin{equation*}
   167 y' = f(t, y), \quad y(t_0) = y_0.
   167 y' = f(t, y), \quad y(t_0) = y_0.
   168 \end{equation}
   168 \end{equation*}
   169 The we can describe the RK4 method for this problem by equations
   169 The we can describe the RK4 method for this problem by equations
   170 \begin{align}
   170 \begin{align*}
   171 y_{n+1} &= y_n + \tfrac{1}{6}h\left(k_1 + 2k_2 + 2k_3 + k_4 \right) \\
   171 y_{n+1} &= y_n + \tfrac{1}{6}h\left(k_1 + 2k_2 + 2k_3 + k_4 \right) \\
   172 t_{n+1} &= t_n + h \\
   172 t_{n+1} &= t_n + h \\
   173 \end{align}
   173 \end{align*}
   174 where $y_{n+1}$ is the RK4 approximation of $y(t_{n+1})$, and
   174 where $y_{n+1}$ is the RK4 approximation of $y(t_{n+1})$, and
   175 \begin{align}
   175 \begin{align*}
   176 k_1 &= f(t_n, y_n) \\
   176 k_1 &= f(t_n, y_n) \\
   177 k_2 &= f(t_n + \tfrac{1}{2}h, y_n + \tfrac{1}{2}h k_1) \\
   177 k_2 &= f(t_n + \tfrac{1}{2}h, y_n + \tfrac{1}{2}h k_1) \\
   178 k_3 &= f(t_n + \tfrac{1}{2}h, y_n + \tfrac{1}{2}h k_2) \\
   178 k_3 &= f(t_n + \tfrac{1}{2}h, y_n + \tfrac{1}{2}h k_2) \\
   179 k_4 &= f(t_n + h, y_n + h k_3) \\
   179 k_4 &= f(t_n + h, y_n + h k_3) \\
   180 \end{align}
   180 \end{align*}
   181 The next value $(y_n+1)$ is determined by the present value $(y_n)$,
   181 The next value $(y_n+1)$ is determined by the present value $(y_n)$,
   182 the product of the interval $(h)$ and an estimated slope that is
   182 the product of the interval $(h)$ and an estimated slope that is
   183 defined as $\frac{1}{6}h\left(k_1+2k_2+2k_3+k_4\right)$.
   183 defined as $\frac{1}{6}h\left(k_1+2k_2+2k_3+k_4\right)$.
   184 
   184 
   185 something network related?
   185 % TODO: something network related?
   186 
   186 
   187 \section{Known bugs}
   187 \section{Known bugs}
   188 A lots of them (or maybe not).
   188 A lots of them (or maybe not).
   189 
   189 
   190 \section{Tasks sharing and schedule}
   190 \section{Tasks sharing and schedule}