
Kishna Glista - Liero Clone
Project Documentation

Atle Kivelä 79171V atle.kivela@tkk.fi
Eric Malmi 80351A eric.malmi@tkk.fi
Tero Marttila 79849E tjmartti@cc.hut.fi
Marko Rasa 78726L morasa@cc.hut.fi

December 9, 2008

Group 66 Kishna Glista - Liero clone AS-0.1102

Contents

1 Instructions for compiling and use 2

1.1 Configuring CMake . 2

1.2 Compiling and Installing . 2

1.3 Command-line Arguments . 2

1.4 Keyboard Controls . 3

1.5 Running the game . 3

1.6 Configuration . 3

2 Program architecture 4

2.1 Network . 5

3 Data structures and algorithms 8

3.1 Basic data structures . 8

3.2 World and Objects . 8

3.3 Collision Detection . 8

3.4 Physics . 9

3.5 Texture generation . 10

3.6 Input . 10

4 Known bugs 11

5 Tasks sharing and schedule 11

6 Differences to the original plan 12

1

Group 66 Kishna Glista - Liero clone AS-0.1102

1 Instructions for compiling and use

1.1 Configuring CMake

You must first generate the project’s CMake configuration inside of build. A
simple script is provided to do so with some default settings. It will configure
the install path as /opt.

• cd build

• ./mkcmake.sh

1.2 Compiling and Installing

Once you have the CMake scripts in place, compiling should be as simple as
running make:

• make

• make install

This will build the binary, and then copy the binary and data files to the
install path configured above.

1.3 Command-line Arguments

Running the game is done using command-line arguments to the executable

Short Long Value Description Default
-p --port PORT Set server TCP/UDP port 9338
-s --server Run as a network server false
-c --client SERVERHOST Run as a network client on given server false
-g --graphics Enable graphics rendering *

* = true, except false when –server is given

The options --server and --client are mutually exclusive, and both cannot
be selected at the same time.

2

Group 66 Kishna Glista - Liero clone AS-0.1102

1.4 Keyboard Controls

The default controls are identical to the origional Liero default controls, with
some additions.

Action Default key(s)
Move Left Arrow Left
Move Right Arrow Right
Aim Up Arrow Up
Aim Down Arror Down
Dig Move Left + Move Right
Shoot Right Control
Jump Right Shift
Change Weapon Enter + Arrow Left / Arrow Right
Throw Rope Change Weapon + Jump
Release Rope Jump
Change Rope Length Change Weapon + Aim Up / Aim Down
Suicide Left Control + K
Exit Game Esc

1.5 Running the game

To simple start a local singleplayer game, just run kg without any arguments.

To start a network server on the default port, run kg --server (kg -s).
You may optionally also specify the --graphics argument to have the server
passively draw the graphics.

To start a network client, connecting to a server running on the default port,
run kg --client=ADDRESS (kg -c <address>).

To use a non-default port, simply specify --port=PORT (-p <port>) on both
client and server.

1.6 Configuration

All global game constants are defined in src/Config.hh, and may be experi-
mented with. Weapon parameters are defined in src/Weapons.cc.

3

Group 66 Kishna Glista - Liero clone AS-0.1102

2 Program architecture

The program consists of four main parts: Graphics&Input, GameState, Net-
work and Physics. Each part contains various classes; the relations show up
in the doxygen generated documentation of the program.

The program starts from the Application class, which then starts the Engine,
which creates GameState, Graphics and the Network Client/Server. Physics
simulation is started when GameState is created.

GameState contains PhysicsWorld which inherits from Terrain and contains a
list of PhysicsObjects. GameState also contains Player and Projectile objects
which inherit from PhysicsObject (and are contained in PhysicsWorld).

Player objects have a list of Weapon objects which they can use to create
Projectiles. Every Player also has a Rope object, which is a separate Physic-
sObject, and is either folded away, being thrown or attached to the terrain.

Graphics and Input are handled in their own classes. Graphics has an Input
object which contains InputHandler objects for various classes of input. One
such object is PlayerInput which affects the GameState’s LocalPlayer. Other
object is GuiInput which just modifies what the GUI look like on the client
side.

The network code is a bit complicated and has several layers. There are some
nice diagrams about the program structure in the doxygen documentation.

Figure 1: Player class inheritance graph.

4

Group 66 Kishna Glista - Liero clone AS-0.1102

Figure 2: Relationships of core GameState class.

2.1 Network

The network code is implemented as separate NetworkServer and Network-
Client modules, which use a common high-level network interface, Network-
Session and NetworkObject.

The low-level details are implemented using ClanLib’s CL IPAddress (re-
ferred to as NetworkAddress) and CL Socket. NetworkUDP provides an inter-
face to send and receive NetworkPackets to/from specific NetworkAddress’s
across a NetworkSocket. NetworkTCP provides a NetworkTCPTransport in-
terface, which can send/receive NetworkPackets on a NetworkSocket (using
NetworkBuffer to buffer socket I/O). NetworkTCPServer is a listen() socket
which accepts client connections as NetworkTCPTransports, and Network-
TCPClient is a NetworkTCPTransport that’s connect()’d to some address.

NetworkSession encapsulates some simple application server/client behaviour,

5

Group 66 Kishna Glista - Liero clone AS-0.1102

it can function as both a server, and represents remote NetworkSessions (ei-
ther clients or servers) as NetworkNode objects. These then provide an in-
terface to send and receive NetworkPackets on specific NetworkChannelDs,
using either TCP or UDP as a reliable/unreliable transport.

NetworkObject then implements a kind of object-oriented network proto-
col. A NetworkObjectController (with specific subclasses for server/client be-
haviour) uses a NetworkSession to send messages on a specific NetworkChan-
nelID. This controller then creates and looks up NetworkObjects (again, with
specific subclasses for server/client behaviour). Clients and servers can then
communicate by having the server construct new NetworkObjects (which
are allocated an unique id), and then sending NetworkPackets with a specific
NetworkMessageID type on a specific object. The message is then delivered
directly to the NetworkObject instance on the remote end of the connection,
or a new NetworkObject is constructed using the data in the NetworkPacket.
This enables an easy way to send events for specific objects, and referr to
other objects in these messages.

NetworkServer then implements a core NetworkServer class which has a Net-
workSession and a NetworkObject ServerController. Players that connect are
represented as NetworkServerPlayers, which inherit from LocalPlayer and
NetworkObject Server. This class then overrides methods in Player to de-
liver messages on the Player object to the clients, or to create new Net-
workServerProjectiles. NetworkServerProjectile inherits from Projectile and
NetworkObject Server, and sends messages when constructed, upon hitting
a player, and upon being destroyed.

NetworkClient is a bit more complicated as it must handle both the Lo-
calPlayer, and a number of RemotePlayers. Again, NetworkClient has a Net-
workSession and a specialized NetworkClientController, which then creates
objects of various other NetworkClientClasses upon receiving messages from
the server.

Two of these classes are NetworkClientLocalPlayer and NetworkClientRemotePlayer.
Both inherit from NetworkClientPlayerBase, which inherits Player (virtu-
ally) and NetworkObject Client. NetworkClientLocalPlayer and Network-
ClientRemotePlayer then also inherit LocalPlayer and Remote player vir-
tually, respectively. NetworkClientPlayerBase contains the common meth-
ods that update the Player’s state in response to messages received from
the server. NetworkClientLocalPlayer overrides handleInput to send the in-
put mask to the server, and NetworkClientRemotePlayer can handle remote
clients disconnecting from the server.

In addition, there is a NetworkClientProjectile class, which inherits from

6

Group 66 Kishna Glista - Liero clone AS-0.1102

Projectile and NetworkObject Client. this is created when a Player fires a
Weapon on the server, and handles events received from the server like the
projectile hitting a player (inflicting damage), or being destroyed (by hitting
the terrain or something similar).

When the player first connects to the server, the server sends a large packet
containing the terrain array to the client, which updates its own GameState
world’s terrain array with the received data.

Currently, the client only sends handleInput using unreliable UDP messages,
and the server only sends position updates (as sent in response to handleInput
events) unreliably. All other events are sent using reliable TCP.

Figure 3: Use of NetworkObject in network code.

7

Group 66 Kishna Glista - Liero clone AS-0.1102

3 Data structures and algorithms

3.1 Basic data structures

• Vector

• List

3.2 World and Objects

The terrain is an important part of our game. We represent our terrain as
a large array. Each shell of the array has a type that tells what is in that
position. Currently, possible terrain types are EMPTY, DIRT and ROCK.

In our physics simulation the shapes of the different elements in the game
are represented as polygons. A polygon is a vector of points that define the
edges of the shape.

3.3 Collision Detection

• Polygon collision detection

• Pixel collision detection

Collision detection algorithms check if objects in the physics simulation are
colliding with eachother. Because our terrain is represented as an array and
objects are represented as polygons we have two different kinds collision
detection algorithms.

The pixel based collision detection used to check collisions with the terrain is
quite simple. It “draws” a line between two points A and B. The algorithm
iterates over the line from point A to B and on each iteration it checks if
theres a collision (i.e. the type of the current point is ROCK or DIRT).

In order to implement the bouncing from the terrain we have to be able
to calculate a normal for the slope of the terrain in the collision point. We
came up with the following algorithm which gives us an approximation of
the normal

1. Take the collision point (p1) and the point before the collision (p2) and
consider a 3x3 array of pixels which has the collision point in the middle
of it.

8

Group 66 Kishna Glista - Liero clone AS-0.1102

2. Find the empty points that are connected to p2 with bredth-first search
algorithm or something similar.

3. Calculate the vectors pointing from the collision point to the empty
points. Sum of these vectors gives us the approximation of the normal.

Picture 4 explains the algorithm a lot. In the middle of the pictured we have
zoomed to the collision point. The red arrow is the sum of the black arrows
and thus it is our approximation for the normal.

Figure 4: Visualizing the algorithm for approximating the normal.

3.4 Physics

The fourth-order Runge-Kutta method is a numerical method for approx-
imating the solution of an ordinary differential equation. In our game the
Runge-Kutta method is used to calculate positions and velocities of physics
objects when we apply forces to them.

The mathematical formulation of the Runge-Kutta method: If we have an
initial value problem of the form

y′ = f(t, y), y(t0) = y0.

9

Group 66 Kishna Glista - Liero clone AS-0.1102

The we can describe the RK4 method for this problem by equations

yn+1 = yn + 1
6
h (k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

where yn+1 is the RK4 approximation of y(tn+1), and

k1 = f(tn, yn)

k2 = f(tn + 1
2
h, yn + 1

2
hk1)

k3 = f(tn + 1
2
h, yn + 1

2
hk2)

k4 = f(tn + h, yn + hk3)

The next value (yn+1) is determined by the present value (yn), the product of
the interval (h) and an estimated slope that is defined as 1

6
h (k1 + 2k2 + 2k3 + k4).

3.5 Texture generation

In texture generation we use random fractal terrain generation algorithm [2].
In one dimension algorithm starts with one straight line. Then it affects to
that line’s midpoint with some random multiplied with H-value. After those
first steps it simply calls itself to both parts of line changing H-value smaller.

We use the two dimensional version of the algorithm. It needs step for point’s
between last density and step diagonal to last density’s points – otherwise it
is quite similar to the one dimensional version. We decide to implement the
algorithm as iterative instead of recursion.

3.6 Input

All input is represented as a bitmask, composed of bits from enum PlayerIn-
putBits. Additionally, the Graphics code uses some local-only flags defined in
enum GuiInputBits. These bitmasks are built using the InputHandler class,
which is defined as a generic template. On every update, it goes through its
keymap, which is defined as an array of InputKeymapEntry structs. These
contain the input bit, flags, and up to two keycodes. The InputHandler then
reads keycodes from the keyboard and sets bits in the current input mask
based on the entry keycodes (which may be negative to indicate the the spec-
ified key must NOT be pressed down) and any key-repetition rules defined
by flags.

10

Group 66 Kishna Glista - Liero clone AS-0.1102

Key repetition is implemented using InputKeyRepeatQueue, which contains
a list of InputKeyRepeatEntry’s. To rate-limit keypresses, the input code
is push()’d to the queue, and it eventually removed from the queue once it
expires, or the key is released.

The Graphics code then reads the input mask from time to time, resetting
the InputHandler’s mask to zero, and passes it on to LocalPlayer, which then
either handles it locally, or sends it to the remote server.

Since some inputs like walking, aiming and moving up and down the rope
are time-dependant, the InputHandler also tracks how many milliseconds the
input mask has been held, and this time delta is applied by LocalPlayer.

4 Known bugs

1. If player dies while rope is attached the rope will still be attached when
the player spawns.

2. If rope is thrown without releasing it first, rope will pull worm while in
mid-air

3. Collisions with the terrain are only tested for the vertices of the poly-
gon. It is thus possible for the player to move through some pixels.

4. Existing Player ropes and Projectiles are not sent to the client when it
connects, which can cause apparent glitches in what the terrain looks
like and how players move.

5 Tasks sharing and schedule

We could have followed the schedule a lot better. We basically forgot the
whole schedule and had a lapse in activity during the middle weeks, which
caused us to be delayed in terms of the schedule. The positive side was that
we almost always had all the team members working on their own things
in parralel and communicating together; either at Maari or using our IRC
channel.

Tasks sharing worked pretty much as planned. Tero did all the network code
and worked on keeping the rest of the code network-safe. Most of our eye-
candy (like terrain textures) was done by Marko, who was responsible for the
graphics. Marko, Eric and Atle worked on everything Physics related plus the

11

Group 66 Kishna Glista - Liero clone AS-0.1102

GameState/Player/Rope/etc code. Most of the time all team members were
working together, so the code was written using common agreement.

We feel that the workload was shared reasonably evenly.

6 Differences to the original plan

The original plan was quite loose and it let us make decisions during develop-
ment, which was a good thing. The basic structure of the program is pretty
much as the one we thought about while planning, although the Network
code ended up being a fair bit more simple-minded due to lack of time to
implement more UDP-based behaviour.

Currently, the program lacks an AI which was in the original plan and most
of the optional features were also omitted. Liero clone proved to be, however,
a very interesting software project and we are hoping to release Kishna Glista
2.0 one day.

References

[1] Gaffer on games. Game Physics. 2006.
http://gafferongames.wordpress.com/game-physics/ (read: 2008-12-08)

[2] Terrain texture generation
http://www.gameprogrammer.com/fractal.html

12

