saveload.c
author Darkvater
Mon, 30 May 2005 22:16:05 +0000
changeset 1881 435d39bd6ee0
parent 1614 f6f2c918356d
child 1884 804ff5f94ed0
permissions -rw-r--r--
(svn r2387) - CodeChange: made the saveload code more readable and also removed the 'byte' saveload arrays which means you can save an array of more than 255 elements, or bigger structs than 255 bytes. This doesn't yet solve the problem that a chunk can be a maximum of 16384 big.
- Fix: also fix an unnoticed error in SlSaveLoadConv() due to wrong types.
/** @file
 * All actions handling saving and loading goes on in this file. The general actions
 * are as follows for saving a game (loading is analogous):
 * <ol>
 * <li>initialize the writer by creating a temporary memory-buffer for it
 * <li>go through all to-be saved elements, each 'chunk' (ChunkHandler) prefixed by a label
 * <li>use their description array (SaveLoad) to know what elements to save and in what version
 *    of the game it was active (used when loading)
 * <li>write all data byte-by-byte to the temporary buffer so it is endian-safe
 * <li>when the buffer is full; flush it to the output (eg save to file) (_sl.buf, _sl.bufp, _sl.bufe)
 * <li>repeat this until everything is done, and flush any remaining output to file
 * </ol>
 * @see ChunkHandler
 * @see SaveLoad
 */
#include "stdafx.h"
#include "ttd.h"
#include "debug.h"
#include "vehicle.h"
#include "station.h"
#include "town.h"
#include "player.h"
#include "saveload.h"

enum {
	SAVEGAME_MAJOR_VERSION = 13,
	SAVEGAME_MINOR_VERSION = 0x1,

	SAVEGAME_LOADABLE_VERSION = (SAVEGAME_MAJOR_VERSION << 8) + SAVEGAME_MINOR_VERSION
};

enum NeedLengthValues {NL_NONE = 0, NL_WANTLENGTH = 1, NL_CALCLENGTH = 2};

SaverLoader _sl;

/**
 * Fill the input buffer by reading from the file with the given reader
 */
static void SlReadFill(void)
{
	uint len = _sl.read_bytes();
	assert(len != 0);

	_sl.bufp = _sl.buf;
	_sl.bufe = _sl.buf + len;
	_sl.offs_base += len;
}

static inline uint32 SlGetOffs(void) {return _sl.offs_base - (_sl.bufe - _sl.bufp);}

/** Flush the output buffer by writing to disk with the given reader.
 * If the buffer pointer has not yet been set up, set it up now. Usually
 * only called when the buffer is full, or there is no more data to be processed
 */
static void SlWriteFill(void)
{
	// flush the buffer to disk (the writer)
	if (_sl.bufp != NULL) {
		uint len = _sl.bufp - _sl.buf;
		_sl.offs_base += len;
		if (len) _sl.write_bytes(len);
	}

	/* All the data from the buffer has been written away, rewind to the beginning
	* to start reading in more data */
	_sl.bufp = _sl.buf;
	_sl.bufe = _sl.buf + _sl.bufsize;
}

/** Error handler, calls longjmp to simulate an exception.
 * @todo this was used to have a central place to handle errors, but it is
 * pretty ugly, and seriously interferes with any multithreaded approaches */
static void NORETURN SlError(const char *msg)
{
	_sl.excpt_msg = msg;
	longjmp(_sl.excpt, 0);
}

/** Read in a single byte from file. If the temporary buffer is full,
 * flush it to its final destination
 * @return return the read byte from file
 */
static inline int SlReadByteInternal(void)
{
	if (_sl.bufp == _sl.bufe) SlReadFill();
	return *_sl.bufp++;
}

/** Wrapper for SlReadByteInternal */
int SlReadByte(void) {return SlReadByteInternal();}

/** Write away a single byte from memory. If the temporary buffer is full,
 * flush it to its destination (file)
 * @param b the byte that is currently written
 */
static inline void SlWriteByteInternal(byte b)
{
	if (_sl.bufp == _sl.bufe) SlWriteFill();
	*_sl.bufp++ = b;
}

/** Wrapper for SlWriteByteInternal */
void SlWriteByte(byte b) {SlWriteByteInternal(b);}

static inline int SlReadUint16(void)
{
	int x = SlReadByte() << 8;
	return x | SlReadByte();
}

static inline uint32 SlReadUint32(void)
{
	uint32 x = SlReadUint16() << 16;
	return x | SlReadUint16();
}

static inline uint64 SlReadUint64(void)
{
	uint32 x = SlReadUint32();
	uint32 y = SlReadUint32();
	return (uint64)x << 32 | y;
}

static inline void SlWriteUint16(VarType v)
{
	SlWriteByte((byte)(v >> 8));
	SlWriteByte((byte)v);
}

static inline void SlWriteUint32(uint32 v)
{
	SlWriteUint16((uint16)(v >> 16));
	SlWriteUint16((uint16)v);
}

static inline void SlWriteUint64(uint64 x)
{
	SlWriteUint32((uint32)(x >> 32));
	SlWriteUint32((uint32)x);
}

/**
 * Read in the header descriptor of an object or an array.
 * If the highest bit is set (7), then the index is bigger than 127
 * elements, so use the next byte to read in the real value.
 * The actual value is then both bytes added with the first shifted
 * 8 bytes to the right, and dropping the highest bit (which only indicated a big index).
 * x = ((x & 0x7F) << 8) + SlReadByte();
 * @return Return the value of the index
 */
static uint SlReadSimpleGamma(void)
{
	uint i = SlReadByte();
	if (HASBIT(i, 7)) {
		i = (i << 8) + SlReadByte();
		CLRBIT(i, 15);
	}
	return i;
}

/**
 * Write the header descriptor of an object or an array.
 * If the element is bigger than 128, use 2 bytes for saving
 * and use the highest byte of the first written one as a notice
 * that the length consists of 2 bytes. The length is fixed to a
 * maximum of 16384 since any higher value will have bit 15 set
 * and the notice, would obfuscate the real value
 * @param i Index being written
 * @todo the maximum of 16384 can easily be reached with vehicles, so raise this artificial limit
 */
static void SlWriteSimpleGamma(uint i)
{
	assert(i < (1 << 14));

	if (i >= (1 << 7)) {
		SlWriteByte((byte)((1 << 7) | (i >> 8)));
		SlWriteByte((byte)i);
	} else
		SlWriteByte(i);
}

/** Return if the length will use up 1 or two bytes in a savegame */
static inline uint SlGetGammaLength(uint i) {return (i >= (1 << 7)) ? 2 : 1;}

static inline int SlReadSparseIndex(void) {return SlReadSimpleGamma();}
static inline void SlWriteSparseIndex(uint index) {SlWriteSimpleGamma(index);}

static inline int SlReadArrayLength(void) {return SlReadSimpleGamma();}
static inline void SlWriteArrayLength(uint length) {SlWriteSimpleGamma(length);}

void SlSetArrayIndex(uint index)
{
	_sl.need_length = NL_WANTLENGTH;
	_sl.array_index = index;
}

/**
 * Iterate through the elements of an array and read the whole thing
 * @return The index of the object, or -1 if we have reached the end of current block
 */
int SlIterateArray(void)
{
	int index;
	static uint32 next_offs;

	/* After reading in the whole array inside the loop
	 * we must have read in all the data, so we must be at end of current block. */
	assert(next_offs == 0 || SlGetOffs() == next_offs);

	while (true) {
		uint length = SlReadArrayLength();
		if (length == 0) {
			next_offs = 0;
			return -1;
		}

		_sl.obj_len = --length;
		next_offs = SlGetOffs() + length;

		switch (_sl.block_mode) {
		case CH_SPARSE_ARRAY:	index = SlReadSparseIndex(); break;
		case CH_ARRAY:        index = _sl.array_index++; break;
		default:
			DEBUG(misc, 0) ("SlIterateArray: error");
			return -1; // error
		}

		if (length != 0) return index;
	}
}

/**
 * Sets the length of either a RIFF object or the number of items in an array.
 * This lets us load an object or an array of arbitrary size
 * @param length The length of the sought object/array
 */
void SlSetLength(size_t length)
{
	switch (_sl.need_length) {
	case NL_WANTLENGTH:
		_sl.need_length = NL_NONE;
		switch (_sl.block_mode) {
		case CH_RIFF:
			// Really simple to write a RIFF length :)
			SlWriteUint32(length);
			break;
		case CH_ARRAY:
			assert(_sl.last_array_index <= _sl.array_index);
			while (++_sl.last_array_index <= _sl.array_index)
				SlWriteArrayLength(1);
			SlWriteArrayLength(length + 1);
			break;
		case CH_SPARSE_ARRAY:
			SlWriteArrayLength(length + 1 + SlGetGammaLength(_sl.array_index)); // Also include length of sparse index.
			SlWriteSparseIndex(_sl.array_index);
			break;
		default: NOT_REACHED();
		} break;
	case NL_CALCLENGTH:
		_sl.obj_len += length;
		break;
	}
}

/**
 * Save/Load bytes. These do not need to be converted to Little/Big Endian
 * so directly write them or read them to/from file
 * @param ptr The source or destination of the object being manipulated
 * @param length number of bytes this fast CopyBytes lasts
 */
static void SlCopyBytes(void *ptr, size_t length)
{
	byte *p = (byte*)ptr;

	if (_sl.save) {
		for (; length != 0; length--) {SlWriteByteInternal(*p++);}
	} else {
		for (; length != 0; length--) {*p++ = SlReadByteInternal();}
	}
}

#if 0
/**
 * Read in bytes from the file/data structure but don't do
 * anything with them
 * NOTICE: currently unused
 * @param length The amount of bytes that is being treated this way
 */
static inline void SlSkipBytes(size_t length)
{
	for (; length != 0; length--)
		SlReadByte();
}
#endif

/* Get the length of the current object */
uint SlGetFieldLength(void) {return _sl.obj_len;}

/**
 * Handle all conversion and typechecking of variables here.
 * In the case of saving, read in the actual value from the struct
 * and then write them to file, endian safely. Loading a value
 * goes exactly the opposite way
 * @param ptr The object being filled/read
 * @param conv @VarType type of the current element of the struct
 */
static void SlSaveLoadConv(void *ptr, VarType conv)
{
	int64 x = 0;

	if (_sl.save) { /* SAVE values */
		/* Read a value from the struct. These ARE endian safe. */
		switch ((conv >> 4) & 0xF) {
		case SLE_VAR_I8   >> 4: x = *(int8*)ptr; break;
		case SLE_VAR_U8   >> 4: x = *(byte*)ptr; break;
		case SLE_VAR_I16  >> 4: x = *(int16*)ptr; break;
		case SLE_VAR_U16  >> 4: x = *(uint16*)ptr; break;
		case SLE_VAR_I32  >> 4: x = *(int32*)ptr; break;
		case SLE_VAR_U32  >> 4: x = *(uint32*)ptr; break;
		case SLE_VAR_I64  >> 4: x = *(int64*)ptr; break;
		case SLE_VAR_U64  >> 4: x = *(uint64*)ptr; break;
		case SLE_VAR_NULL >> 4: x = 0; break;
		default: NOT_REACHED();
		}

		// Write the value to the file and check if its value is in the desired range
		switch (conv & 0xF) {
		case SLE_FILE_I8: assert(x >= -128 && x <= 127);     SlWriteByte(x);break;
		case SLE_FILE_U8:	assert(x >= 0 && x <= 255);        SlWriteByte(x);break;
		case SLE_FILE_I16:assert(x >= -32768 && x <= 32767); SlWriteUint16(x);break;
		case SLE_FILE_STRINGID:
		case SLE_FILE_U16:assert(x >= 0 && x <= 65535);      SlWriteUint16(x);break;
		case SLE_FILE_I32: case SLE_FILE_U32:                SlWriteUint32((uint32)x);break;
		case SLE_FILE_I64: case SLE_FILE_U64:                SlWriteUint64(x);break;
		default: NOT_REACHED();
		}
	} else { /* LOAD values */

		// Read a value from the file
		switch (conv & 0xF) {
		case SLE_FILE_I8:  x = (int8)SlReadByte(); break;
		case SLE_FILE_U8:  x = (byte)SlReadByte(); break;
		case SLE_FILE_I16: x = (int16)SlReadUint16(); break;
		case SLE_FILE_U16: x = (uint16)SlReadUint16(); break;
		case SLE_FILE_I32: x = (int32)SlReadUint32(); break;
		case SLE_FILE_U32: x = (uint32)SlReadUint32(); break;
		case SLE_FILE_I64: x = (int64)SlReadUint64(); break;
		case SLE_FILE_U64: x = (uint64)SlReadUint64(); break;
		case SLE_FILE_STRINGID: x = RemapOldStringID((uint16)SlReadUint16()); break;
		default: NOT_REACHED();
		}

		/* Write The value to the struct. These ARE endian safe. */
		switch ((conv >> 4) & 0xF) {
		case SLE_VAR_I8   >> 4:  *(int8*)ptr = x; break;
		case SLE_VAR_U8   >> 4:  *(byte*)ptr = x; break;
		case SLE_VAR_I16  >> 4: *(int16*)ptr = x; break;
		case SLE_VAR_U16  >> 4: *(uint16*)ptr = x; break;
		case SLE_VAR_I32  >> 4: *(int32*)ptr = x; break;
		case SLE_VAR_U32  >> 4: *(uint32*)ptr = x; break;
		case SLE_VAR_I64  >> 4: *(int64*)ptr = x; break;
		case SLE_VAR_U64  >> 4: *(uint64*)ptr = x; break;
		case SLE_VAR_NULL >> 4: break;
		default: NOT_REACHED();
		}
	}
}

/* Length in bytes of the various datatypes in a savefile. These
 * sizes are guaranteed by assert_compiles in stdafx.h */
static const byte _conv_lengths[] = {1, 1, 2, 2, 4, 4, 8, 8, 2};

/**
 * Return the size in bytes of a certain type of normal/atomic variable
 * @param var The variable the size is being asked of (NOTICE: unused)
 * @param conv @VarType type of variable that is used for calculating the size
 * @return Return the size of this type in byes
 */
static inline size_t SlCalcConvLen(const void *var, VarType conv) {return _conv_lengths[conv & 0xF];}

/**
 * Return the size in bytes of a reference (pointer)
 */
static inline size_t SlCalcRefLen(void) {return 2;}

/**
 * Return the size in bytes of a certain type of atomic array
 * @param array The variable the size is being asked of (NOTICE: unused)
 * @param length The length of the array counted in elements
 * @param conv @VarType type of the variable that is used in calculating the size
 */
static inline size_t SlCalcArrayLen(const void *array, uint length, VarType conv) {return _conv_lengths[conv & 0xF] * length;}

/**
 * Save/Load an array.
 * @param array The array being manipulated
 * @param length The length of the array in elements
 * @param conv @VarType type of the atomic array (int, byte, uint64, etc.)
 */
void SlArray(void *array, uint length, VarType conv)
{
	static const byte conv_mem_size[] = {1, 1, 2, 2, 4, 4, 8, 8, 0};

	// Automatically calculate the length?
	if (_sl.need_length != NL_NONE) {
		SlSetLength(SlCalcArrayLen(array, length, conv));
		// Determine length only?
		if (_sl.need_length == NL_CALCLENGTH)
			return;
	}

	/* NOTICE - handle some buggy stuff, in really old versions everything was saved
	 * as a byte-type. So detect this, and adjust array size accordingly */
	if (!_sl.save && _sl.version == 0) {
		if (conv == SLE_INT16 || conv == SLE_UINT16 || conv == SLE_STRINGID) {
			length *= 2; // int16, uint16 and StringID are 2 bytes in size
			conv = SLE_INT8;
		} else if (conv == SLE_INT32 || conv == SLE_UINT32) {
			length *= 4; // int32 and uint32 are 4 bytes in size
			conv = SLE_INT8;
		}
	}

	/* If the size of elements is 1 byte, no special conversion is needed,
	 * use specialized copy-to-copy function to speed up things */
	if (conv == SLE_INT8 || conv == SLE_UINT8) {
		SlCopyBytes(array, length);
	} else {
		byte *a = (byte*)array;
		for (; length != 0; length --) {
			SlSaveLoadConv(a, conv);
			a += conv_mem_size[(conv >> 4) & 0xF]; // get size
		}
	}
}

/**
 * Calculate the size of an object.
 * @param object Object that needs its length calculated
 * @param sld The @SaveLoad description of the object so we know how to manipulate it
 */
static size_t SlCalcObjLength(void *object, const SaveLoad *sld)
{
	size_t length = 0;

	// Need to determine the length and write a length tag.
	for (; sld->cmd != SL_END; sld++) {
		if (sld->cmd < SL_WRITEBYTE) {
			if (HASBIT(sld->cmd, 2)) {
				// check if the field is used in the current savegame version
				if (_sl.version < sld->version_from || _sl.version > sld->version_to)
					continue;
			}

			switch (sld->cmd) {
			case SL_VAR: case SL_CONDVAR: /* Normal Variable */
				length += SlCalcConvLen(NULL, sld->type); break;
			case SL_REF: case SL_CONDREF:  /* Reference variable */
				length += SlCalcRefLen(); break;
			case SL_ARR: case SL_CONDARR: /* Array */
				length += SlCalcArrayLen(NULL, sld->length, sld->type); break;
			default: NOT_REACHED();
			}
		} else if (sld->cmd == SL_WRITEBYTE) {
			length++; // a byte is logically of size 1
		} else if (sld->cmd == SL_INCLUDE) {
			length += SlCalcObjLength(NULL, _sl.includes[sld->version_from]);
		}	else
			assert(sld->cmd == SL_END);
	}
	return length;
}

/**
 * Main SaveLoad function.
 * @param object The object that is being saved or loaded
 * @param sld The @SaveLoad description of the object so we know how to manipulate it
 */
void SlObject(void *object, const SaveLoad *sld)
{
	// Automatically calculate the length?
	if (_sl.need_length != NL_NONE) {
		SlSetLength(SlCalcObjLength(object, sld));
		if (_sl.need_length == NL_CALCLENGTH)
			return;
	}

	for (; sld->cmd != SL_END; sld++) {
		void *ptr = (byte*)object + sld->offset;

		if (sld->cmd < SL_WRITEBYTE) {
			/* CONDITIONAL saveload types depend on the savegame version */
			if (HASBIT(sld->cmd, 2)) {
				// check if the field is of the right version, if not, proceed to next one
				if (_sl.version < sld->version_from || _sl.version > sld->version_to)
					continue;
			}

			switch (sld->cmd) {
			case SL_VAR: case SL_CONDVAR: /* Normal variable */
				SlSaveLoadConv(ptr, sld->type); break;
			case SL_REF: case SL_CONDREF: /* Reference variable, translate */
				/// @todo XXX - another artificial limitof 65K elements of pointers?
				if (_sl.save) { // XXX - read/write pointer as uint16? What is with higher indeces?
					SlWriteUint16(_sl.ref_to_int_proc(*(void**)ptr, sld->type));
				} else
					*(void**)ptr = _sl.int_to_ref_proc(SlReadUint16(), sld->type);
				break;
			case SL_ARR: case SL_CONDARR: /* Array */
				SlArray(ptr, sld->length, sld->type); break;
			default: NOT_REACHED();
			}

		/* SL_WRITEBYTE translates a value of a variable to another one upon
		 * saving or loading.
		 * XXX - variable renaming abuse
		 * g_value: the value of the variable ingame is abused by sld->version_from
		 * f_value: the value of the variable in the savegame is abused by sld->version_to */
		} else if (sld->cmd == SL_WRITEBYTE) {
			if (_sl.save) {
				SlWriteByte(sld->version_to);
			} else
				*(byte*)ptr = sld->version_from;
		/* SL_INCLUDE loads common code for a type
		 * XXX - variable renaming abuse
		 * include_index: common code to include from _desc_includes[], abused by sld->version_from */
		} else if (sld->cmd == SL_INCLUDE) {
			SlObject(ptr, _sl.includes[sld->version_from]);
		}	else
			assert(sld->cmd == SL_END);
	}
}

/** Calculate the length of global variables
 * @param desc The global variable that we want to know the size of
 * @return Returns the length of the sought global object
 */
static size_t SlCalcGlobListLength(const SaveLoadGlobVarList *desc)
{
	size_t length = 0;

	for (; desc->address != NULL; desc++) {
		// Of course the global variable must exist in the sought savegame version
		if (_sl.version >= desc->from_version && _sl.version <= desc->to_version)
			length += SlCalcConvLen(NULL, desc->conv);
	}
	return length;
}

/**
 * Save or Load (a list of) global variables
 * @param desc The global variable that is being loaded or saved
 */
void SlGlobList(const SaveLoadGlobVarList *desc)
{
	if (_sl.need_length != NL_NONE) {
		SlSetLength(SlCalcGlobListLength(desc));
		if (_sl.need_length == NL_CALCLENGTH)
			return;
	}

	for (; desc->address != NULL; desc++) {
		if (_sl.version >= desc->from_version && _sl.version <= desc->to_version)
			SlSaveLoadConv(desc->address, desc->conv);
	}
}

/**
 * Do something of which I have no idea what it is :P
 * @param proc The callback procedure that is called
 * @param arg The variable that will be used for the callback procedure
 */
void SlAutolength(AutolengthProc *proc, void *arg)
{
	uint32 offs;

	assert(_sl.save);

	// Tell it to calculate the length
	_sl.need_length = NL_CALCLENGTH;
	_sl.obj_len = 0;
	proc(arg);

	// Setup length
	_sl.need_length = NL_WANTLENGTH;
	SlSetLength(_sl.obj_len);

	offs = SlGetOffs() + _sl.obj_len;

	// And write the stuff
	proc(arg);

	assert(offs == SlGetOffs());
}

/**
 * Load a chunk of data (eg vehicles, stations, etc.)
 * @param ch The chunkhandler that will be used for the operation
 */
static void SlLoadChunk(const ChunkHandler *ch)
{
	byte m = SlReadByte();
	size_t len;
	uint32 endoffs;

	_sl.block_mode = m;
	_sl.obj_len = 0;

	switch (m) {
	case CH_ARRAY:
		_sl.array_index = 0;
		ch->load_proc();
		break;
	case CH_SPARSE_ARRAY:
		ch->load_proc();
		break;
	case CH_RIFF:
		// Read length
		len = SlReadByte() << 16;
		len += SlReadUint16();
		_sl.obj_len = len;
		endoffs = SlGetOffs() + len;
		ch->load_proc();
		assert(SlGetOffs() == endoffs);
		break;
	default: NOT_REACHED();
	}
}

/* Stub Chunk handlers to only calculate length and do nothing else */
static ChunkSaveLoadProc *_tmp_proc_1;
static inline void SlStubSaveProc2(void *arg) {_tmp_proc_1();}
static void SlStubSaveProc(void) {SlAutolength(SlStubSaveProc2, NULL);}

/** Save a chunk of data (eg. vehicles, stations, etc.). Each chunk is
 * prefixed by an ID identifying it, followed by data, and terminator where appropiate
 * @param ch The chunkhandler that will be used for the operation
 */
static void SlSaveChunk(const ChunkHandler *ch)
{
	ChunkSaveLoadProc *proc = ch->save_proc;

	SlWriteUint32(ch->id);

	if (ch->flags & CH_AUTO_LENGTH) {
		// Need to calculate the length. Solve that by calling SlAutoLength in the save_proc.
		_tmp_proc_1 = proc;
		proc = SlStubSaveProc;
	}

	_sl.block_mode = ch->flags & CH_TYPE_MASK;
	switch (ch->flags & CH_TYPE_MASK) {
	case CH_RIFF:
		_sl.need_length = NL_WANTLENGTH;
		proc();
		break;
	case CH_ARRAY:
		_sl.last_array_index = 0;
		SlWriteByte(CH_ARRAY);
		proc();
		SlWriteArrayLength(0); // Terminate arrays
		break;
	case CH_SPARSE_ARRAY:
		SlWriteByte(CH_SPARSE_ARRAY);
		proc();
		SlWriteArrayLength(0); // Terminate arrays
		break;
	default: NOT_REACHED();
	}
}

/** Save all chunks */
static void SlSaveChunks(void)
{
	const ChunkHandler *ch;
	const ChunkHandler* const *chsc;
	uint p;

	for (p = 0; p != CH_NUM_PRI_LEVELS; p++) {
		for (chsc = _sl.chs; (ch = *chsc++) != NULL;) {
			while (true) {
				if (((ch->flags >> CH_PRI_SHL) & (CH_NUM_PRI_LEVELS - 1)) == p)
					SlSaveChunk(ch);
				if (ch->flags & CH_LAST)
					break;
				ch++;
			}
		}
	}

	// Terminator
	SlWriteUint32(0);
}

/** Find the ChunkHandler that will be used for processing the found
 * chunk in the savegame or in memory
 * @param id the chunk in question
 * @return returns the appropiate chunkhandler
 */
static const ChunkHandler *SlFindChunkHandler(uint32 id)
{
	const ChunkHandler *ch;
	const ChunkHandler *const *chsc;
	for (chsc = _sl.chs; (ch=*chsc++) != NULL;) {
		while(true) {
			if (ch->id == id)
				return ch;
			if (ch->flags & CH_LAST)
				break;
			ch++;
		}
	}
	return NULL;
}

/** Load all chunks */
static void SlLoadChunks(void)
{
	uint32 id;
	const ChunkHandler *ch;

	for (id = SlReadUint32(); id != 0; id = SlReadUint32()) {
		DEBUG(misc, 1) ("Loading chunk %c%c%c%c", id >> 24, id>>16, id>>8, id);

		ch = SlFindChunkHandler(id);
		if (ch == NULL) SlError("found unknown tag in savegame (sync error)");
		SlLoadChunk(ch);
	}
}

//*******************************************
//********** START OF LZO CODE **************
//*******************************************
#define LZO_SIZE 8192

#include "minilzo.h"

static uint ReadLZO(void)
{
	byte out[LZO_SIZE + LZO_SIZE / 64 + 16 + 3 + 8];
	uint32 tmp[2];
	uint32 size;
	uint len;

	// Read header
	if (fread(tmp, sizeof(tmp), 1, _sl.fh) != 1) SlError("file read failed");

	// Check if size is bad
	((uint32*)out)[0] = size = tmp[1];

	if (_sl.version != 0) {
		tmp[0] = TO_BE32(tmp[0]);
		size = TO_BE32(size);
	}

	if (size >= sizeof(out)) SlError("inconsistent size");

	// Read block
	if (fread(out + sizeof(uint32), size, 1, _sl.fh) != 1) SlError("file read failed");

	// Verify checksum
	if (tmp[0] != lzo_adler32(0, out, size + sizeof(uint32))) SlError("bad checksum");

	// Decompress
	lzo1x_decompress(out + sizeof(uint32)*1, size, _sl.buf, &len, NULL);
	return len;
}

// p contains the pointer to the buffer, len contains the pointer to the length.
// len bytes will be written, p and l will be updated to reflect the next buffer.
static void WriteLZO(uint size)
{
	byte out[LZO_SIZE + LZO_SIZE / 64 + 16 + 3 + 8];
	byte wrkmem[sizeof(byte*)*4096];
	uint outlen;

	lzo1x_1_compress(_sl.buf, size, out + sizeof(uint32)*2, &outlen, wrkmem);
	((uint32*)out)[1] = TO_BE32(outlen);
	((uint32*)out)[0] = TO_BE32(lzo_adler32(0, out + sizeof(uint32), outlen + sizeof(uint32)));
	if (fwrite(out, outlen + sizeof(uint32)*2, 1, _sl.fh) != 1) SlError("file write failed");
}

static bool InitLZO(void)
{
	_sl.bufsize = LZO_SIZE;
	_sl.buf = (byte*)malloc(LZO_SIZE);
	return true;
}

static void UninitLZO(void)
{
	free(_sl.buf);
}

//*********************************************
//******** START OF NOCOMP CODE (uncompressed)*
//*********************************************
static uint ReadNoComp(void)
{
	return fread(_sl.buf, 1, LZO_SIZE, _sl.fh);
}

static void WriteNoComp(uint size)
{
	fwrite(_sl.buf, 1, size, _sl.fh);
}

static bool InitNoComp(void)
{
	_sl.bufsize = LZO_SIZE;
	_sl.buf = (byte*)malloc(LZO_SIZE);
	return true;
}

static void UninitNoComp(void)
{
	free(_sl.buf);
}

//********************************************
//********** START OF ZLIB CODE **************
//********************************************

#if defined(WITH_ZLIB)
#include <zlib.h>
static z_stream _z;

static bool InitReadZlib(void)
{
	memset(&_z, 0, sizeof(_z));
	if (inflateInit(&_z) != Z_OK) return false;

	_sl.bufsize = 4096;
	_sl.buf = (byte*)malloc(4096 + 4096); // also contains fread buffer
	return true;
}

static uint ReadZlib(void)
{
	int r;

	_z.next_out = _sl.buf;
	_z.avail_out = 4096;

	do {
		// read more bytes from the file?
		if (_z.avail_in == 0) {
			_z.avail_in = fread(_z.next_in = _sl.buf + 4096, 1, 4096, _sl.fh);
		}

		// inflate the data
		r = inflate(&_z, 0);
		if (r == Z_STREAM_END)
			break;

		if (r != Z_OK)
			SlError("inflate() failed");
	} while (_z.avail_out);

	return 4096 - _z.avail_out;
}

static void UninitReadZlib(void)
{
	inflateEnd(&_z);
	free(_sl.buf);
}

static bool InitWriteZlib(void)
{
	memset(&_z, 0, sizeof(_z));
	if (deflateInit(&_z, 6) != Z_OK) return false;

	_sl.bufsize = 4096;
	_sl.buf = (byte*)malloc(4096); // also contains fread buffer
	return true;
}

static void WriteZlibLoop(z_streamp z, byte *p, uint len, int mode)
{
	char buf[1024]; // output buffer
	int r;
	uint n;
	z->next_in = p;
	z->avail_in = len;
	do {
		z->next_out = buf;
		z->avail_out = sizeof(buf);
		r	= deflate(z, mode);
			// bytes were emitted?
		if ((n=sizeof(buf) - z->avail_out) != 0) {
			if (fwrite(buf, n, 1, _sl.fh) != 1) SlError("file write error");
		}
		if (r == Z_STREAM_END)
			break;
		if (r != Z_OK) SlError("zlib returned error code");
	} while (z->avail_in || !z->avail_out);
}

static void WriteZlib(uint len)
{
	WriteZlibLoop(&_z, _sl.buf, len, 0);
}

static void UninitWriteZlib(void)
{
	// flush any pending output.
	if (_sl.fh) WriteZlibLoop(&_z, NULL, 0, Z_FINISH);
	deflateEnd(&_z);
	free(_sl.buf);
}

#endif /* WITH_ZLIB */

//*******************************************
//************* END OF CODE *****************
//*******************************************

// these define the chunks
extern const ChunkHandler _misc_chunk_handlers[];
extern const ChunkHandler _player_chunk_handlers[];
extern const ChunkHandler _veh_chunk_handlers[];
extern const ChunkHandler _waypoint_chunk_handlers[];
extern const ChunkHandler _depot_chunk_handlers[];
extern const ChunkHandler _order_chunk_handlers[];
extern const ChunkHandler _town_chunk_handlers[];
extern const ChunkHandler _sign_chunk_handlers[];
extern const ChunkHandler _station_chunk_handlers[];
extern const ChunkHandler _industry_chunk_handlers[];
extern const ChunkHandler _engine_chunk_handlers[];
extern const ChunkHandler _economy_chunk_handlers[];
extern const ChunkHandler _animated_tile_chunk_handlers[];

static const ChunkHandler * const _chunk_handlers[] = {
	_misc_chunk_handlers,
	_veh_chunk_handlers,
	_waypoint_chunk_handlers,
	_depot_chunk_handlers,
	_order_chunk_handlers,
	_industry_chunk_handlers,
	_economy_chunk_handlers,
	_engine_chunk_handlers,
	_town_chunk_handlers,
	_sign_chunk_handlers,
	_station_chunk_handlers,
	_player_chunk_handlers,
	_animated_tile_chunk_handlers,
	NULL,
};

// used to include a vehicle desc in another desc.
extern const SaveLoad _common_veh_desc[];
static const SaveLoad* const _desc_includes[] = {
	_common_veh_desc
};

/**
 * Pointers cannot be saved to a savegame, so this functions gets
 * the index of the item, and if not available, it hussles with
 * pointers (looks really bad :()
 * Remember that a NULL item has value 0, and all
 * indeces have +1, so vehicle 0 is saved as index 1.
 * @param obj The object that we want to get the index of
 * @param rt @SLRefType type of the object the index is being sought of
 * @return Return the pointer converted to an index of the type pointed to
 */
static uint ReferenceToInt(const void *obj, SLRefType rt)
{
	if (obj == NULL) return 0;

	switch (rt) {
		case REF_VEHICLE_OLD: // Old vehicles we save as new onces
		case REF_VEHICLE: return ((Vehicle *)obj)->index + 1;
		case REF_STATION: return ((Station *)obj)->index + 1;
		case REF_TOWN:    return ((Town *)obj)->index + 1;
		case REF_ORDER:   return ((Order *)obj)->index + 1;
		case REF_ROADSTOPS: return ((RoadStop *)obj)->index + 1;
		default: NOT_REACHED();
	}

	return 0; // avoid compiler warning
}

/**
 * Pointers cannot be loaded from a savegame, so this function
 * gets the index from the savegame and returns the appropiate
 * pointer from the already loaded base.
 * Remember that an index of 0 is a NULL pointer so all indeces
 * are +1 so vehicle 0 is saved as 1.
 * @param index The index that is being converted to a pointer
 * @param rt @SLRefType type of the object the pointer is sought of
 * @return Return the index converted to a pointer of any type
 */
static void *IntToReference(uint index, SLRefType rt)
{
	/* After version 4.3 REF_VEHICLE_OLD is saved as REF_VEHICLE,
	 * and should be loaded like that */
	if (rt == REF_VEHICLE_OLD && _sl.full_version >= ((4 << 8) | 4))
		rt = REF_VEHICLE;

	/* No need to look up NULL pointers, just return immediately */
	if (rt != REF_VEHICLE_OLD && index == 0)
		return NULL;

	index--; // correct for the NULL index

	switch (rt) {
		case REF_ORDER: {
			if (!AddBlockIfNeeded(&_order_pool, index))
				error("Orders: failed loading savegame: too many orders");
			return GetOrder(index);
		}
		case REF_VEHICLE: {
			if (!AddBlockIfNeeded(&_vehicle_pool, index))
				error("Vehicles: failed loading savegame: too many vehicles");
			return GetVehicle(index);
		}
		case REF_STATION: {
			if (!AddBlockIfNeeded(&_station_pool, index))
				error("Stations: failed loading savegame: too many stations");
			return GetStation(index);
		}
		case REF_TOWN: {
			if (!AddBlockIfNeeded(&_town_pool, index))
				error("Towns: failed loading savegame: too many towns");
			return GetTown(index);
		}
		case REF_ROADSTOPS: {
			if (!AddBlockIfNeeded(&_roadstop_pool, index))
				error("RoadStops: failed loading savegame: too many RoadStops");
			return GetRoadStop(index);
		}

		case REF_VEHICLE_OLD: {
			/* Old vehicles were saved differently:
			 * invalid vehicle was 0xFFFF,
			 * and the index was not - 1.. correct for this */
			index++;
			if (index == INVALID_VEHICLE)
				return NULL;

			if (!AddBlockIfNeeded(&_vehicle_pool, index))
				error("Vehicles: failed loading savegame: too many vehicles");
			return GetVehicle(index);
		}
		default: NOT_REACHED();
	}

	return NULL;
}

/** The format for a reader/writer type of a savegame */
typedef struct {
	const char *name;           /// name of the compressor/decompressor (debug-only)
	uint32 tag;                 /// the 4-letter tag by which it is identified in the savegame

	bool (*init_read)(void);    /// function executed upon initalization of the loader
	ReaderProc *reader;         /// function that loads the data from the file
	void (*uninit_read)(void);  /// function executed when reading is finished

	bool (*init_write)(void);   /// function executed upon intialization of the saver
	WriterProc *writer;         /// function that saves the data to the file
	void (*uninit_write)(void); /// function executed when writing is done
} SaveLoadFormat;

static const SaveLoadFormat _saveload_formats[] = {
	{"lzo",  TO_BE32X('OTTD'), InitLZO,      ReadLZO,    UninitLZO,      InitLZO,       WriteLZO,    UninitLZO},
	{"none", TO_BE32X('OTTN'), InitNoComp,   ReadNoComp, UninitNoComp,   InitNoComp,    WriteNoComp, UninitNoComp},
#if defined(WITH_ZLIB)
	{"zlib", TO_BE32X('OTTZ'), InitReadZlib, ReadZlib,   UninitReadZlib, InitWriteZlib, WriteZlib,   UninitWriteZlib},
#else
	{"zlib", TO_BE32X('OTTZ'), NULL,         NULL,       NULL,           NULL,          NULL,        NULL}
#endif
};

/**
 * Return the savegameformat of the game. Whether it was create with ZLIB compression
 * uncompressed, or another type
 * @param s Name of the savegame format
 * @return Pointer to @SaveLoadFormat struct giving all characteristics of this type of savegame
 */
static const SaveLoadFormat *GetSavegameFormat(const char *s)
{
	const SaveLoadFormat *def = endof(_saveload_formats) - 1;
	int i;

	// find default savegame format, the highest one with which files can be written
	while (!def->init_write) def--;

	if (_savegame_format[0]) {
		for (i = 0; i != lengthof(_saveload_formats); i++)
			if (_saveload_formats[i].init_write && !strcmp(s, _saveload_formats[i].name))
				return _saveload_formats + i;

		ShowInfoF("Savegame format '%s' is not available. Reverting to '%s'.", s, def->name);
	}
	return def;
}

// actual loader/saver function
void InitializeGame(uint log_x, uint log_y);
extern bool AfterLoadGame(uint version);
extern void BeforeSaveGame(void);
extern bool LoadOldSaveGame(const char *file);

/** Small helper function to close the to be loaded savegame an signal error */
static inline int AbortSaveLoad(void)
{
	if (_sl.fh != NULL) fclose(_sl.fh);

	_sl.fh = NULL;
	return SL_ERROR;
}

/**
 * Main Save or Load function where the high-level saveload functions are
 * handled. It opens the savegame, selects format and checks versions
 * @param filename The name of the savegame being created/loaded
 * @param mode Save or load. Load can also be a TTD(Patch) game. Use SL_LOAD, SL_OLD_LOAD or SL_SAVE
 * @return Return the results of the action. SL_OK, SL_ERROR or SL_REINIT ("unload" the game)
 */
int SaveOrLoad(const char *filename, int mode)
{
	uint32 hdr[2];
	const SaveLoadFormat *fmt;
  uint version;

	/* Load a TTDLX or TTDPatch game */
	if (mode == SL_OLD_LOAD) {
		InitializeGame(8, 8); // set a mapsize of 256x256 for TTDPatch games or it might get confused
		if (!LoadOldSaveGame(filename)) return SL_REINIT;
		AfterLoadGame(0);
		return SL_OK;
	}

	_sl.fh = fopen(filename, (mode == SL_SAVE) ? "wb" : "rb");
	if (_sl.fh == NULL) {
		DEBUG(misc, 0) ("Cannot open savegame for saving/loading.");
		return SL_ERROR;
	}

	_sl.bufe = _sl.bufp = NULL;
	_sl.offs_base = 0;
	_sl.int_to_ref_proc = IntToReference;
	_sl.ref_to_int_proc = ReferenceToInt;
	_sl.save = mode;
	_sl.includes = _desc_includes;
	_sl.chs = _chunk_handlers;

	/* Setup setjmp error handler, if it fails don't even bother loading the game */
	if (setjmp(_sl.excpt)) {
		AbortSaveLoad();

		// deinitialize compressor.
		_sl.excpt_uninit();

		/* A saver/loader exception!! reinitialize all variables to prevent crash! */
		if (mode == SL_LOAD) {
			ShowInfoF("Load game failed: %s.", _sl.excpt_msg);
			return SL_REINIT;
		} else {
			ShowInfoF("Save game failed: %s.", _sl.excpt_msg);
			return SL_ERROR;
		}
	}

  /* We first initialize here to avoid: "warning: variable `version' might
   * be clobbered by `longjmp' or `vfork'" */
	version = 0;

	if (mode == SL_SAVE) { /* SAVE game */
		fmt = GetSavegameFormat(_savegame_format);

		_sl.write_bytes = fmt->writer;
		_sl.excpt_uninit = fmt->uninit_write;
		if (!fmt->init_write()) {
			DEBUG(misc, 0) ("Initializing writer %s failed.", fmt->name);
			return AbortSaveLoad();
		}

		hdr[0] = fmt->tag;
		hdr[1] = TO_BE32((SAVEGAME_MAJOR_VERSION << 16) + (SAVEGAME_MINOR_VERSION << 8));
		if (fwrite(hdr, sizeof(hdr), 1, _sl.fh) != 1) SlError("Writing savegame header failed");

		_sl.version = SAVEGAME_MAJOR_VERSION;

		BeforeSaveGame();
		SlSaveChunks();
		SlWriteFill(); // flush the save buffer
		fmt->uninit_write();

	} else { /* LOAD game */
		if (fread(hdr, sizeof(hdr), 1, _sl.fh) != 1) {
			DEBUG(misc, 0) ("Cannot read Savegame header, aborting.");
			return AbortSaveLoad();
		}

		// see if we have any loader for this type.
		for (fmt = _saveload_formats; ; fmt++) {
			/* No loader found, treat as version 0 and use LZO format */
			if (fmt == endof(_saveload_formats)) {
				DEBUG(misc, 0) ("Unknown savegame type, trying to load it as the buggy format.");
				rewind(_sl.fh);
				_sl.version = version = 0;
				_sl.full_version = 0;
				fmt = _saveload_formats + 0; // LZO
				break;
			}

			if (fmt->tag == hdr[0]) {
				// check version number
				version = TO_BE32(hdr[1]) >> 8;

				/* Is the version higher than the current? */
				if (version > SAVEGAME_LOADABLE_VERSION) {
					DEBUG(misc, 0) ("Savegame version invalid.");
					return AbortSaveLoad();
				}

				_sl.version = (version >> 8);
				_sl.full_version = version;
				break;
			}
		}

		_sl.read_bytes = fmt->reader;
		_sl.excpt_uninit = fmt->uninit_read;

		// loader for this savegame type is not implemented?
		if (fmt->init_read == NULL) {
			ShowInfoF("Loader for '%s' is not available.", fmt->name);
			return AbortSaveLoad();
		}

		if (!fmt->init_read()) {
			DEBUG(misc, 0) ("Initializing loader %s failed.", fmt->name);
			return AbortSaveLoad();
		}

		/* XXX - ??? Set the current map to 256x256, in case of an old map.
		 * Else MAPS will read the wrong information. This should initialize
		 * to savegame mapsize no?? */
		InitializeGame(8, 8);

		SlLoadChunks();
		fmt->uninit_read();
	}

	fclose(_sl.fh);

	/* After loading fix up savegame for any internal changes that
	 * might've occured since then. If it fails, load back the old game */
	if (mode == SL_LOAD && !AfterLoadGame(version))
			return SL_REINIT;

	return SL_OK;
}

/** Do a save when exiting the game (patch option) _patches.autosave_on_exit */
void DoExitSave(void)
{
	char buf[200];
	snprintf(buf, sizeof(buf), "%s%sexit.sav", _path.autosave_dir, PATHSEP);
	SaveOrLoad(buf, SL_SAVE);
}

#if 0
/**
 * Function to get the type of the savegame by looking at the file header.
 * NOTICE: Not used right now, but could be used if extensions of savegames are garbled
 * @param file Savegame to be checked
 * @return SL_OLD_LOAD or SL_LOAD of the file
 */
int GetSavegameType(char *file)
{
	const SaveLoadFormat *fmt;
	uint32 hdr;
	FILE *f;
	int mode = SL_OLD_LOAD;

	f = fopen(file, "rb");
	if (fread(&hdr, sizeof(hdr), 1, f) != 1) {
		printf("Savegame is obsolete or invalid format.\n");
		mode = SL_LOAD;	// don't try to get filename, just show name as it is written
	}
	else {
		// see if we have any loader for this type.
		for (fmt = _saveload_formats; fmt != endof(_saveload_formats); fmt++) {
			if (fmt->tag == hdr) {
				mode = SL_LOAD; // new type of savegame
				break;
			}
		}
	}

	fclose(f);
	return mode;
}
#endif