src/queue.cpp
branchcustombridgeheads
changeset 5649 55c8267c933f
parent 5643 3778051e8095
child 5650 aefc131bf5ce
equal deleted inserted replaced
5648:1608018c5ff2 5649:55c8267c933f
       
     1 /* $Id$ */
       
     2 
       
     3 #include "stdafx.h"
       
     4 #include "openttd.h"
       
     5 #include "queue.h"
       
     6 
       
     7 static void Stack_Clear(Queue* q, bool free_values)
       
     8 {
       
     9 	if (free_values) {
       
    10 		uint i;
       
    11 
       
    12 		for (i = 0; i < q->data.stack.size; i++) free(q->data.stack.elements[i]);
       
    13 	}
       
    14 	q->data.stack.size = 0;
       
    15 }
       
    16 
       
    17 static void Stack_Free(Queue* q, bool free_values)
       
    18 {
       
    19 	q->clear(q, free_values);
       
    20 	free(q->data.stack.elements);
       
    21 	if (q->freeq) free(q);
       
    22 }
       
    23 
       
    24 static bool Stack_Push(Queue* q, void* item, int priority)
       
    25 {
       
    26 	if (q->data.stack.size == q->data.stack.max_size) return false;
       
    27 	q->data.stack.elements[q->data.stack.size++] = item;
       
    28 	return true;
       
    29 }
       
    30 
       
    31 static void* Stack_Pop(Queue* q)
       
    32 {
       
    33 	if (q->data.stack.size == 0) return NULL;
       
    34 	return q->data.stack.elements[--q->data.stack.size];
       
    35 }
       
    36 
       
    37 static bool Stack_Delete(Queue* q, void* item, int priority)
       
    38 {
       
    39 	return false;
       
    40 }
       
    41 
       
    42 static Queue* init_stack(Queue* q, uint max_size)
       
    43 {
       
    44 	q->push = Stack_Push;
       
    45 	q->pop = Stack_Pop;
       
    46 	q->del = Stack_Delete;
       
    47 	q->clear = Stack_Clear;
       
    48 	q->free = Stack_Free;
       
    49 	q->data.stack.max_size = max_size;
       
    50 	q->data.stack.size = 0;
       
    51 	q->data.stack.elements = malloc(max_size * sizeof(*q->data.stack.elements));
       
    52 	q->freeq = false;
       
    53 	return q;
       
    54 }
       
    55 
       
    56 Queue* new_Stack(uint max_size)
       
    57 {
       
    58 	Queue* q = malloc(sizeof(*q));
       
    59 
       
    60 	init_stack(q, max_size);
       
    61 	q->freeq = true;
       
    62 	return q;
       
    63 }
       
    64 
       
    65 /*
       
    66  * Fifo
       
    67  */
       
    68 
       
    69 static void Fifo_Clear(Queue* q, bool free_values)
       
    70 {
       
    71 	if (free_values) {
       
    72 		uint head = q->data.fifo.head;
       
    73 		uint tail = q->data.fifo.tail; /* cache for speed */
       
    74 
       
    75 		while (head != tail) {
       
    76 			free(q->data.fifo.elements[tail]);
       
    77 			tail = (tail + 1) % q->data.fifo.max_size;
       
    78 		}
       
    79 	}
       
    80 	q->data.fifo.head = 0;
       
    81 	q->data.fifo.tail = 0;
       
    82 }
       
    83 
       
    84 static void Fifo_Free(Queue* q, bool free_values)
       
    85 {
       
    86 	q->clear(q, free_values);
       
    87 	free(q->data.fifo.elements);
       
    88 	if (q->freeq) free(q);
       
    89 }
       
    90 
       
    91 static bool Fifo_Push(Queue* q, void* item, int priority)
       
    92 {
       
    93 	uint next = (q->data.fifo.head + 1) % q->data.fifo.max_size;
       
    94 
       
    95 	if (next == q->data.fifo.tail) return false;
       
    96 	q->data.fifo.elements[q->data.fifo.head] = item;
       
    97 
       
    98 	q->data.fifo.head = next;
       
    99 	return true;
       
   100 }
       
   101 
       
   102 static void* Fifo_Pop(Queue* q)
       
   103 {
       
   104 	void* result;
       
   105 
       
   106 	if (q->data.fifo.head == q->data.fifo.tail) return NULL;
       
   107 	result = q->data.fifo.elements[q->data.fifo.tail];
       
   108 
       
   109 	q->data.fifo.tail = (q->data.fifo.tail + 1) % q->data.fifo.max_size;
       
   110 	return result;
       
   111 }
       
   112 
       
   113 static bool Fifo_Delete(Queue* q, void* item, int priority)
       
   114 {
       
   115 	return false;
       
   116 }
       
   117 
       
   118 static Queue* init_fifo(Queue* q, uint max_size)
       
   119 {
       
   120 	q->push = Fifo_Push;
       
   121 	q->pop = Fifo_Pop;
       
   122 	q->del = Fifo_Delete;
       
   123 	q->clear = Fifo_Clear;
       
   124 	q->free = Fifo_Free;
       
   125 	q->data.fifo.max_size = max_size;
       
   126 	q->data.fifo.head = 0;
       
   127 	q->data.fifo.tail = 0;
       
   128 	q->data.fifo.elements = malloc(max_size * sizeof(*q->data.fifo.elements));
       
   129 	q->freeq = false;
       
   130 	return q;
       
   131 }
       
   132 
       
   133 Queue* new_Fifo(uint max_size)
       
   134 {
       
   135 	Queue* q = malloc(sizeof(*q));
       
   136 
       
   137 	init_fifo(q, max_size);
       
   138 	q->freeq = true;
       
   139 	return q;
       
   140 }
       
   141 
       
   142 
       
   143 /*
       
   144  * Insertion Sorter
       
   145  */
       
   146 
       
   147 static void InsSort_Clear(Queue* q, bool free_values)
       
   148 {
       
   149 	InsSortNode* node = q->data.inssort.first;
       
   150 	InsSortNode* prev;
       
   151 
       
   152 	while (node != NULL) {
       
   153 		if (free_values) free(node->item);
       
   154 		prev = node;
       
   155 		node = node->next;
       
   156 		free(prev);
       
   157 	}
       
   158 	q->data.inssort.first = NULL;
       
   159 }
       
   160 
       
   161 static void InsSort_Free(Queue* q, bool free_values)
       
   162 {
       
   163 	q->clear(q, free_values);
       
   164 	if (q->freeq) free(q);
       
   165 }
       
   166 
       
   167 static bool InsSort_Push(Queue* q, void* item, int priority)
       
   168 {
       
   169 	InsSortNode* newnode = malloc(sizeof(*newnode));
       
   170 
       
   171 	if (newnode == NULL) return false;
       
   172 	newnode->item = item;
       
   173 	newnode->priority = priority;
       
   174 	if (q->data.inssort.first == NULL ||
       
   175 			q->data.inssort.first->priority >= priority) {
       
   176 		newnode->next = q->data.inssort.first;
       
   177 		q->data.inssort.first = newnode;
       
   178 	} else {
       
   179 		InsSortNode* node = q->data.inssort.first;
       
   180 		while (node != NULL) {
       
   181 			if (node->next == NULL || node->next->priority >= priority) {
       
   182 				newnode->next = node->next;
       
   183 				node->next = newnode;
       
   184 				break;
       
   185 			}
       
   186 			node = node->next;
       
   187 		}
       
   188 	}
       
   189 	return true;
       
   190 }
       
   191 
       
   192 static void* InsSort_Pop(Queue* q)
       
   193 {
       
   194 	InsSortNode* node = q->data.inssort.first;
       
   195 	void* result;
       
   196 
       
   197 	if (node == NULL) return NULL;
       
   198 	result = node->item;
       
   199 	q->data.inssort.first = q->data.inssort.first->next;
       
   200 	assert(q->data.inssort.first == NULL || q->data.inssort.first->priority >= node->priority);
       
   201 	free(node);
       
   202 	return result;
       
   203 }
       
   204 
       
   205 static bool InsSort_Delete(Queue* q, void* item, int priority)
       
   206 {
       
   207 	return false;
       
   208 }
       
   209 
       
   210 void init_InsSort(Queue* q)
       
   211 {
       
   212 	q->push = InsSort_Push;
       
   213 	q->pop = InsSort_Pop;
       
   214 	q->del = InsSort_Delete;
       
   215 	q->clear = InsSort_Clear;
       
   216 	q->free = InsSort_Free;
       
   217 	q->data.inssort.first = NULL;
       
   218 	q->freeq = false;
       
   219 }
       
   220 
       
   221 Queue* new_InsSort(void)
       
   222 {
       
   223 	Queue* q = malloc(sizeof(*q));
       
   224 
       
   225 	init_InsSort(q);
       
   226 	q->freeq = true;
       
   227 	return q;
       
   228 }
       
   229 
       
   230 
       
   231 /*
       
   232  * Binary Heap
       
   233  * For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
       
   234  */
       
   235 
       
   236 #define BINARY_HEAP_BLOCKSIZE (1 << BINARY_HEAP_BLOCKSIZE_BITS)
       
   237 #define BINARY_HEAP_BLOCKSIZE_MASK (BINARY_HEAP_BLOCKSIZE - 1)
       
   238 
       
   239 // To make our life easy, we make the next define
       
   240 //  Because Binary Heaps works with array from 1 to n,
       
   241 //  and C with array from 0 to n-1, and we don't like typing
       
   242 //  q->data.binaryheap.elements[i - 1] every time, we use this define.
       
   243 #define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i) - 1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i) - 1) & BINARY_HEAP_BLOCKSIZE_MASK]
       
   244 
       
   245 static void BinaryHeap_Clear(Queue* q, bool free_values)
       
   246 {
       
   247 	/* Free all items if needed and free all but the first blocks of memory */
       
   248 	uint i;
       
   249 	uint j;
       
   250 
       
   251 	for (i = 0; i < q->data.binaryheap.blocks; i++) {
       
   252 		if (q->data.binaryheap.elements[i] == NULL) {
       
   253 			/* No more allocated blocks */
       
   254 			break;
       
   255 		}
       
   256 		/* For every allocated block */
       
   257 		if (free_values) {
       
   258 			for (j = 0; j < (1 << BINARY_HEAP_BLOCKSIZE_BITS); j++) {
       
   259 				/* For every element in the block */
       
   260 				if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i &&
       
   261 						(q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j) {
       
   262 					break; /* We're past the last element */
       
   263 				}
       
   264 				free(q->data.binaryheap.elements[i][j].item);
       
   265 			}
       
   266 		}
       
   267 		if (i != 0) {
       
   268 			/* Leave the first block of memory alone */
       
   269 			free(q->data.binaryheap.elements[i]);
       
   270 			q->data.binaryheap.elements[i] = NULL;
       
   271 		}
       
   272 	}
       
   273 	q->data.binaryheap.size = 0;
       
   274 	q->data.binaryheap.blocks = 1;
       
   275 }
       
   276 
       
   277 static void BinaryHeap_Free(Queue* q, bool free_values)
       
   278 {
       
   279 	uint i;
       
   280 
       
   281 	q->clear(q, free_values);
       
   282 	for (i = 0; i < q->data.binaryheap.blocks; i++) {
       
   283 		if (q->data.binaryheap.elements[i] == NULL) break;
       
   284 		free(q->data.binaryheap.elements[i]);
       
   285 	}
       
   286 	free(q->data.binaryheap.elements);
       
   287 	if (q->freeq) free(q);
       
   288 }
       
   289 
       
   290 static bool BinaryHeap_Push(Queue* q, void* item, int priority)
       
   291 {
       
   292 #ifdef QUEUE_DEBUG
       
   293 	printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
       
   294 #endif
       
   295 
       
   296 	if (q->data.binaryheap.size == q->data.binaryheap.max_size) return false;
       
   297 	assert(q->data.binaryheap.size < q->data.binaryheap.max_size);
       
   298 
       
   299 	if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
       
   300 		/* The currently allocated blocks are full, allocate a new one */
       
   301 		assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
       
   302 		q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(*q->data.binaryheap.elements[0]));
       
   303 		q->data.binaryheap.blocks++;
       
   304 #ifdef QUEUE_DEBUG
       
   305 		printf("[BinaryHeap] Increasing size of elements to %d nodes\n", q->data.binaryheap.blocks *  BINARY_HEAP_BLOCKSIZE);
       
   306 #endif
       
   307 	}
       
   308 
       
   309 	// Add the item at the end of the array
       
   310 	BIN_HEAP_ARR(q->data.binaryheap.size + 1).priority = priority;
       
   311 	BIN_HEAP_ARR(q->data.binaryheap.size + 1).item = item;
       
   312 	q->data.binaryheap.size++;
       
   313 
       
   314 	// Now we are going to check where it belongs. As long as the parent is
       
   315 	// bigger, we switch with the parent
       
   316 	{
       
   317 		BinaryHeapNode temp;
       
   318 		int i;
       
   319 		int j;
       
   320 
       
   321 		i = q->data.binaryheap.size;
       
   322 		while (i > 1) {
       
   323 			// Get the parent of this object (divide by 2)
       
   324 			j = i / 2;
       
   325 			// Is the parent bigger then the current, switch them
       
   326 			if (BIN_HEAP_ARR(i).priority <= BIN_HEAP_ARR(j).priority) {
       
   327 				temp = BIN_HEAP_ARR(j);
       
   328 				BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
       
   329 				BIN_HEAP_ARR(i) = temp;
       
   330 				i = j;
       
   331 			} else {
       
   332 				// It is not, we're done!
       
   333 				break;
       
   334 			}
       
   335 		}
       
   336 	}
       
   337 
       
   338 	return true;
       
   339 }
       
   340 
       
   341 static bool BinaryHeap_Delete(Queue* q, void* item, int priority)
       
   342 {
       
   343 	uint i = 0;
       
   344 
       
   345 #ifdef QUEUE_DEBUG
       
   346 	printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
       
   347 #endif
       
   348 
       
   349 	// First, we try to find the item..
       
   350 	do {
       
   351 		if (BIN_HEAP_ARR(i + 1).item == item) break;
       
   352 		i++;
       
   353 	} while (i < q->data.binaryheap.size);
       
   354 	// We did not find the item, so we return false
       
   355 	if (i == q->data.binaryheap.size) return false;
       
   356 
       
   357 	// Now we put the last item over the current item while decreasing the size of the elements
       
   358 	q->data.binaryheap.size--;
       
   359 	BIN_HEAP_ARR(i + 1) = BIN_HEAP_ARR(q->data.binaryheap.size + 1);
       
   360 
       
   361 	// Now the only thing we have to do, is resort it..
       
   362 	// On place i there is the item to be sorted.. let's start there
       
   363 	{
       
   364 		uint j;
       
   365 		BinaryHeapNode temp;
       
   366 		/* Because of the fact that Binary Heap uses array from 1 to n, we need to
       
   367 		 * increase i by 1
       
   368 		 */
       
   369 		i++;
       
   370 
       
   371 		for (;;) {
       
   372 			j = i;
       
   373 			// Check if we have 2 childs
       
   374 			if (2 * j + 1 <= q->data.binaryheap.size) {
       
   375 				// Is this child smaller than the parent?
       
   376 				if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
       
   377 				// Yes, we _need_ to use i here, not j, because we want to have the smallest child
       
   378 				//  This way we get that straight away!
       
   379 				if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2 * j + 1).priority) i = 2 * j + 1;
       
   380 			// Do we have one child?
       
   381 			} else if (2 * j <= q->data.binaryheap.size) {
       
   382 				if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2 * j).priority) i = 2 * j;
       
   383 			}
       
   384 
       
   385 			// One of our childs is smaller than we are, switch
       
   386 			if (i != j) {
       
   387 				temp = BIN_HEAP_ARR(j);
       
   388 				BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
       
   389 				BIN_HEAP_ARR(i) = temp;
       
   390 			} else {
       
   391 				// None of our childs is smaller, so we stay here.. stop :)
       
   392 				break;
       
   393 			}
       
   394 		}
       
   395 	}
       
   396 
       
   397 	return true;
       
   398 }
       
   399 
       
   400 static void* BinaryHeap_Pop(Queue* q)
       
   401 {
       
   402 	void* result;
       
   403 
       
   404 #ifdef QUEUE_DEBUG
       
   405 	printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
       
   406 #endif
       
   407 
       
   408 	if (q->data.binaryheap.size == 0) return NULL;
       
   409 
       
   410 	// The best item is always on top, so give that as result
       
   411 	result = BIN_HEAP_ARR(1).item;
       
   412 	// And now we should get rid of this item...
       
   413 	BinaryHeap_Delete(q, BIN_HEAP_ARR(1).item, BIN_HEAP_ARR(1).priority);
       
   414 
       
   415 	return result;
       
   416 }
       
   417 
       
   418 void init_BinaryHeap(Queue* q, uint max_size)
       
   419 {
       
   420 	assert(q != NULL);
       
   421 	q->push = BinaryHeap_Push;
       
   422 	q->pop = BinaryHeap_Pop;
       
   423 	q->del = BinaryHeap_Delete;
       
   424 	q->clear = BinaryHeap_Clear;
       
   425 	q->free = BinaryHeap_Free;
       
   426 	q->data.binaryheap.max_size = max_size;
       
   427 	q->data.binaryheap.size = 0;
       
   428 	// We malloc memory in block of BINARY_HEAP_BLOCKSIZE
       
   429 	//   It autosizes when it runs out of memory
       
   430 	q->data.binaryheap.elements = calloc((max_size - 1) / BINARY_HEAP_BLOCKSIZE + 1, sizeof(*q->data.binaryheap.elements));
       
   431 	q->data.binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(*q->data.binaryheap.elements[0]));
       
   432 	q->data.binaryheap.blocks = 1;
       
   433 	q->freeq = false;
       
   434 #ifdef QUEUE_DEBUG
       
   435 	printf("[BinaryHeap] Initial size of elements is %d nodes\n", BINARY_HEAP_BLOCKSIZE);
       
   436 #endif
       
   437 }
       
   438 
       
   439 Queue* new_BinaryHeap(uint max_size)
       
   440 {
       
   441 	Queue* q = malloc(sizeof(*q));
       
   442 
       
   443 	init_BinaryHeap(q, max_size);
       
   444 	q->freeq = true;
       
   445 	return q;
       
   446 }
       
   447 
       
   448 // Because we don't want anyone else to bother with our defines
       
   449 #undef BIN_HEAP_ARR
       
   450 
       
   451 /*
       
   452  * Hash
       
   453  */
       
   454 
       
   455 void init_Hash(Hash* h, Hash_HashProc* hash, uint num_buckets)
       
   456 {
       
   457 	/* Allocate space for the Hash, the buckets and the bucket flags */
       
   458 	uint i;
       
   459 
       
   460 	assert(h != NULL);
       
   461 #ifdef HASH_DEBUG
       
   462 	debug("Allocated hash: %p", h);
       
   463 #endif
       
   464 	h->hash = hash;
       
   465 	h->size = 0;
       
   466 	h->num_buckets = num_buckets;
       
   467 	h->buckets = malloc(num_buckets * (sizeof(*h->buckets) + sizeof(*h->buckets_in_use)));
       
   468 #ifdef HASH_DEBUG
       
   469 	debug("Buckets = %p", h->buckets);
       
   470 #endif
       
   471 	h->buckets_in_use = (bool*)(h->buckets + num_buckets);
       
   472 	h->freeh = false;
       
   473 	for (i = 0; i < num_buckets; i++) h->buckets_in_use[i] = false;
       
   474 }
       
   475 
       
   476 Hash* new_Hash(Hash_HashProc* hash, int num_buckets)
       
   477 {
       
   478 	Hash* h = malloc(sizeof(*h));
       
   479 
       
   480 	init_Hash(h, hash, num_buckets);
       
   481 	h->freeh = true;
       
   482 	return h;
       
   483 }
       
   484 
       
   485 void delete_Hash(Hash* h, bool free_values)
       
   486 {
       
   487 	uint i;
       
   488 
       
   489 	/* Iterate all buckets */
       
   490 	for (i = 0; i < h->num_buckets; i++) {
       
   491 		if (h->buckets_in_use[i]) {
       
   492 			HashNode* node;
       
   493 
       
   494 			/* Free the first value */
       
   495 			if (free_values) free(h->buckets[i].value);
       
   496 			node = h->buckets[i].next;
       
   497 			while (node != NULL) {
       
   498 				HashNode* prev = node;
       
   499 
       
   500 				node = node->next;
       
   501 				/* Free the value */
       
   502 				if (free_values) free(prev->value);
       
   503 				/* Free the node */
       
   504 				free(prev);
       
   505 			}
       
   506 		}
       
   507 	}
       
   508 	free(h->buckets);
       
   509 	/* No need to free buckets_in_use, it is always allocated in one
       
   510 	 * malloc with buckets */
       
   511 #ifdef HASH_DEBUG
       
   512 	debug("Freeing Hash: %p", h);
       
   513 #endif
       
   514 	if (h->freeh) free(h);
       
   515 }
       
   516 
       
   517 #ifdef HASH_STATS
       
   518 static void stat_Hash(const Hash* h)
       
   519 {
       
   520 	uint used_buckets = 0;
       
   521 	uint max_collision = 0;
       
   522 	uint max_usage = 0;
       
   523 	uint usage[200];
       
   524 	uint i;
       
   525 
       
   526 	for (i = 0; i < lengthof(usage); i++) usage[i] = 0;
       
   527 	for (i = 0; i < h->num_buckets; i++) {
       
   528 		uint collision = 0;
       
   529 		if (h->buckets_in_use[i]) {
       
   530 			const HashNode* node;
       
   531 
       
   532 			used_buckets++;
       
   533 			for (node = &h->buckets[i]; node != NULL; node = node->next) collision++;
       
   534 			if (collision > max_collision) max_collision = collision;
       
   535 		}
       
   536 		if (collision >= lengthof(usage)) collision = lengthof(usage) - 1;
       
   537 		usage[collision]++;
       
   538 		if (collision > 0 && usage[collision] >= max_usage) {
       
   539 			max_usage = usage[collision];
       
   540 		}
       
   541 	}
       
   542 	printf(
       
   543 		"---\n"
       
   544 		"Hash size: %d\n"
       
   545 		"Nodes used: %d\n"
       
   546 		"Non empty buckets: %d\n"
       
   547 		"Max collision: %d\n",
       
   548 		h->num_buckets, h->size, used_buckets, max_collision
       
   549 	);
       
   550 	printf("{ ");
       
   551 	for (i = 0; i <= max_collision; i++) {
       
   552 		if (usage[i] > 0) {
       
   553 			printf("%d:%d ", i, usage[i]);
       
   554 #if 0
       
   555 			if (i > 0) {
       
   556 				uint j;
       
   557 
       
   558 				for (j = 0; j < usage[i] * 160 / 800; j++) putchar('#');
       
   559 			}
       
   560 			printf("\n");
       
   561 #endif
       
   562 		}
       
   563 	}
       
   564 	printf ("}\n");
       
   565 }
       
   566 #endif
       
   567 
       
   568 void clear_Hash(Hash* h, bool free_values)
       
   569 {
       
   570 	uint i;
       
   571 
       
   572 #ifdef HASH_STATS
       
   573 	if (h->size > 2000) stat_Hash(h);
       
   574 #endif
       
   575 
       
   576 	/* Iterate all buckets */
       
   577 	for (i = 0; i < h->num_buckets; i++) {
       
   578 		if (h->buckets_in_use[i]) {
       
   579 			HashNode* node;
       
   580 
       
   581 			h->buckets_in_use[i] = false;
       
   582 			/* Free the first value */
       
   583 			if (free_values) free(h->buckets[i].value);
       
   584 			node = h->buckets[i].next;
       
   585 			while (node != NULL) {
       
   586 				HashNode* prev = node;
       
   587 
       
   588 				node = node->next;
       
   589 				if (free_values) free(prev->value);
       
   590 				free(prev);
       
   591 			}
       
   592 		}
       
   593 	}
       
   594 	h->size = 0;
       
   595 }
       
   596 
       
   597 /* Finds the node that that saves this key pair. If it is not
       
   598  * found, returns NULL. If it is found, *prev is set to the
       
   599  * node before the one found, or if the node found was the first in the bucket
       
   600  * to NULL. If it is not found, *prev is set to the last HashNode in the
       
   601  * bucket, or NULL if it is empty. prev can also be NULL, in which case it is
       
   602  * not used for output.
       
   603  */
       
   604 static HashNode* Hash_FindNode(const Hash* h, uint key1, uint key2, HashNode** prev_out)
       
   605 {
       
   606 	uint hash = h->hash(key1, key2);
       
   607 	HashNode* result = NULL;
       
   608 
       
   609 #ifdef HASH_DEBUG
       
   610 	debug("Looking for %u, %u", key1, key2);
       
   611 #endif
       
   612 	/* Check if the bucket is empty */
       
   613 	if (!h->buckets_in_use[hash]) {
       
   614 		if (prev_out != NULL) *prev_out = NULL;
       
   615 		result = NULL;
       
   616 	/* Check the first node specially */
       
   617 	} else if (h->buckets[hash].key1 == key1 && h->buckets[hash].key2 == key2) {
       
   618 		/* Save the value */
       
   619 		result = h->buckets + hash;
       
   620 		if (prev_out != NULL) *prev_out = NULL;
       
   621 #ifdef HASH_DEBUG
       
   622 		debug("Found in first node: %p", result);
       
   623 #endif
       
   624 	/* Check all other nodes */
       
   625 	} else {
       
   626 		HashNode* prev = h->buckets + hash;
       
   627 		HashNode* node;
       
   628 
       
   629 		for (node = prev->next; node != NULL; node = node->next) {
       
   630 			if (node->key1 == key1 && node->key2 == key2) {
       
   631 				/* Found it */
       
   632 				result = node;
       
   633 #ifdef HASH_DEBUG
       
   634 				debug("Found in other node: %p", result);
       
   635 #endif
       
   636 				break;
       
   637 			}
       
   638 			prev = node;
       
   639 		}
       
   640 		if (prev_out != NULL) *prev_out = prev;
       
   641 	}
       
   642 #ifdef HASH_DEBUG
       
   643 	if (result == NULL) debug("Not found");
       
   644 #endif
       
   645 	return result;
       
   646 }
       
   647 
       
   648 void* Hash_Delete(Hash* h, uint key1, uint key2)
       
   649 {
       
   650 	void* result;
       
   651 	HashNode* prev; /* Used as output var for below function call */
       
   652 	HashNode* node = Hash_FindNode(h, key1, key2, &prev);
       
   653 
       
   654 	if (node == NULL) {
       
   655 		/* not found */
       
   656 		result = NULL;
       
   657 	} else if (prev == NULL) {
       
   658 		/* It is in the first node, we can't free that one, so we free
       
   659 		 * the next one instead (if there is any)*/
       
   660 		/* Save the value */
       
   661 		result = node->value;
       
   662 		if (node->next != NULL) {
       
   663 			HashNode* next = node->next;
       
   664 			/* Copy the second to the first */
       
   665 			*node = *next;
       
   666 			/* Free the second */
       
   667 #ifndef NOFREE
       
   668 			free(next);
       
   669 #endif
       
   670 		} else {
       
   671 			/* This was the last in this bucket */
       
   672 			/* Mark it as empty */
       
   673 			uint hash = h->hash(key1, key2);
       
   674 			h->buckets_in_use[hash] = false;
       
   675 		}
       
   676 	} else {
       
   677 		/* It is in another node */
       
   678 		/* Save the value */
       
   679 		result = node->value;
       
   680 		/* Link previous and next nodes */
       
   681 		prev->next = node->next;
       
   682 		/* Free the node */
       
   683 #ifndef NOFREE
       
   684 		free(node);
       
   685 #endif
       
   686 	}
       
   687 	if (result != NULL) h->size--;
       
   688 	return result;
       
   689 }
       
   690 
       
   691 
       
   692 void* Hash_Set(Hash* h, uint key1, uint key2, void* value)
       
   693 {
       
   694 	HashNode* prev;
       
   695 	HashNode* node = Hash_FindNode(h, key1, key2, &prev);
       
   696 
       
   697 	if (node != NULL) {
       
   698 		/* Found it */
       
   699 		void* result = node->value;
       
   700 
       
   701 		node->value = value;
       
   702 		return result;
       
   703 	}
       
   704 	/* It is not yet present, let's add it */
       
   705 	if (prev == NULL) {
       
   706 		/* The bucket is still empty */
       
   707 		uint hash = h->hash(key1, key2);
       
   708 		h->buckets_in_use[hash] = true;
       
   709 		node = h->buckets + hash;
       
   710 	} else {
       
   711 		/* Add it after prev */
       
   712 		node = malloc(sizeof(*node));
       
   713 		prev->next = node;
       
   714 	}
       
   715 	node->next = NULL;
       
   716 	node->key1 = key1;
       
   717 	node->key2 = key2;
       
   718 	node->value = value;
       
   719 	h->size++;
       
   720 	return NULL;
       
   721 }
       
   722 
       
   723 void* Hash_Get(const Hash* h, uint key1, uint key2)
       
   724 {
       
   725 	HashNode* node = Hash_FindNode(h, key1, key2, NULL);
       
   726 
       
   727 #ifdef HASH_DEBUG
       
   728 	debug("Found node: %p", node);
       
   729 #endif
       
   730 	return (node != NULL) ? node->value : NULL;
       
   731 }
       
   732 
       
   733 uint Hash_Size(const Hash* h)
       
   734 {
       
   735 	return h->size;
       
   736 }