(svn r2136) - Fix: [ 1174313 ] terrain hotkeys nonfunctional in scenario editor (D,Q,W,E,R,T,Y,U fltr)
- Fix: 'L' no longer opens ingame terraform bar in scenario editor bar, but the land generator one
- Feature: [ 1095110 ] Create Lake and draggable Create Desert tools (initial implementation GoneWacko), also added sticky buttons to land generator and town generator
- CodeChange: moved around some of the draggable tools, demystifying them
- CodeChange: change CmdBuildCanal to allow for XANDY dragging not only X or Y (only scenario editor)
- CodeChange: add some more enums to sprites.
- TODO: merge most of the ingame and scenario editor land terraform code. This can only be done after OnClickButton function is changed so it also includes the backreference to the widget being clicked, postponed to after 0.4.0
#include "stdafx.h"
#include "ttd.h"
#include "debug.h"
#include "npf.h"
#include "aystar.h"
#include "macros.h"
#include "pathfind.h"
#include "station.h"
#include "tile.h"
#include "depot.h"
AyStar _train_find_station;
AyStar _train_find_depot;
AyStar _road_find_station;
AyStar _road_find_depot;
AyStar _npf_aystar;
/* Maps a trackdir to the bit that stores its status in the map arrays, in the
* direction along with the trackdir */
const byte _signal_along_trackdir[14] = {
0x80, 0x80, 0x80, 0x20, 0x40, 0x10, 0, 0,
0x40, 0x40, 0x40, 0x10, 0x80, 0x20
};
/* Maps a trackdir to the bit that stores its status in the map arrays, in the
* direction against the trackdir */
const byte _signal_against_trackdir[14] = {
0x40, 0x40, 0x40, 0x10, 0x80, 0x20, 0, 0,
0x80, 0x80, 0x80, 0x20, 0x40, 0x10
};
/* Maps a trackdir to the trackdirs that can be reached from it (ie, when
* entering the next tile */
const uint16 _trackdir_reaches_trackdirs[14] = {
0x1009, 0x0016, 0x1009, 0x0016, 0x0520, 0x0016, 0, 0,
0x0520, 0x2A00, 0x2A00, 0x0520, 0x2A00, 0x1009
};
/* Maps a trackdir to all trackdirs that make 90 deg turns with it. */
const uint16 _trackdir_crosses_trackdirs[14] = {
0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C, 0, 0,
0x0202, 0x0101, 0x3030, 0x3030, 0x0C0C, 0x0C0C
};
/* Maps a track to all tracks that make 90 deg turns with it. */
const byte _track_crosses_tracks[6] = {
0x2, /* Track 1 -> Track 2 */
0x1, /* Track 2 -> Track 1 */
0x30, /* Upper -> Left | Right */
0x30, /* Lower -> Left | Right */
0x0C, /* Left -> Upper | Lower */
0x0C, /* Right -> Upper | Lower */
};
/* Maps a trackdir to the (4-way) direction the tile is exited when following
* that trackdir */
const byte _trackdir_to_exitdir[14] = {
0,1,0,1,2,1, 0,0,
2,3,3,2,3,0,
};
const byte _track_exitdir_to_trackdir[6][4] = {
{0, 0xff, 8, 0xff},
{0xff, 1, 0xff, 9},
{2, 0xff, 0xff, 10},
{0xff, 3, 11, 0xf},
{0xff, 0xff, 4, 12},
{13, 5, 0xff, 0xff}
};
const byte _track_direction_to_trackdir[6][8] = {
{0xff, 0, 0xff, 0xff, 0xff, 8, 0xff, 0xff},
{0xff, 0xff, 0xff, 1, 0xff, 0xff, 0xff, 9},
{0xff, 0xff, 2, 0xff, 0xff, 0xff, 10, 0xff},
{0xff, 0xff, 3, 0xff, 0xff, 0xff, 11, 0xff},
{12, 0xff, 0xff, 0xff, 4, 0xff, 0xff, 0xff},
{13, 0xff, 0xff, 0xff, 5, 0xff, 0xff, 0xff}
};
const byte _dir_to_diag_trackdir[4] = {
0, 1, 8, 9,
};
const byte _reverse_dir[4] = {
2, 3, 0, 1
};
const byte _reverse_trackdir[14] = {
8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5
};
/* The cost of each trackdir. A diagonal piece is the full NPF_TILE_LENGTH,
* the shorter piece is sqrt(2)/2*NPF_TILE_LENGTH =~ 0.7071
*/
#define NPF_STRAIGHT_LENGTH (uint)(NPF_TILE_LENGTH * 0.7071)
static const uint _trackdir_length[14] = {
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH,
0, 0,
NPF_TILE_LENGTH, NPF_TILE_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH, NPF_STRAIGHT_LENGTH
};
uint NTPHash(uint key1, uint key2)
{
return PATHFIND_HASH_TILE(key1);
}
int32 NPFCalcZero(AyStar* as, AyStarNode* current, OpenListNode* parent) {
return 0;
}
/* Calcs the tile of given station that is closest to a given tile
* for this we assume the station is a rectangle,
* as defined by its top tile (st->train_tile) and its width/height (st->trainst_w, st->trainst_h)
*/
TileIndex CalcClosestStationTile(int station, TileIndex tile) {
const Station* st = GetStation(station);
int x1,x2,x3,tx;
int y1,y2,y3,ty;
x1 = TileX(st->train_tile); y1 = TileY(st->train_tile); // topmost corner of station
x2 = x1 + st->trainst_w - 1; y2 = y1 + st->trainst_h - 1; // lowermost corner of station
x3 = TileX(tile); y3 = TileY(tile); // tile we take the distance from
// we are going the aim for the x coordinate of the closest corner
// but if we are between those coordinates, we will aim for our own x coordinate
if (x3 < x1)
tx = x1;
else if (x3 > x2)
tx = x2;
else
tx = x3;
// same for y coordinate, see above comment
if (y3 < y1)
ty = y1;
else if (y3 > y2)
ty = y2;
else
ty = y3;
// return the tile of our target coordinates
return TILE_XY(tx,ty);
};
/* Calcs the heuristic to the target tile (using NPFFindStationOrTileData).
* If the target is a station, the heuristic is probably "wrong"! Normally
* this shouldn't matter, but if it turns out to be a problem, we could use
* the heuristic below?
* Afterthis will save the heuristic into NPFFoundTargetData if it is the
* smallest until now. It will then also save
* AyStarNode.user_data[NPF_TRACKDIR_CHOICE] in best_trackdir
*/
int32 NPFCalcTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent) {
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
TileIndex from = current->tile;
TileIndex to = fstd->dest_coords;
uint dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;
if (dist < ftd->best_bird_dist) {
ftd->best_bird_dist = dist;
ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE];
}
#ifdef NPF_DEBUG
debug("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist);
#endif
return dist;
}
/* Calcs the heuristic to the target station or tile. Almost the same as above
* function, but calculates the distance to train stations with
* CalcClosestStationTile instead. So is somewhat more correct for stations
* (truly optimistic), but this added correctness is not really required we
* believe (matthijs & Hackykid)
*/
int32 NPFCalcStationOrTileHeuristic(AyStar* as, AyStarNode* current, OpenListNode* parent) {
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
TileIndex from = current->tile;
TileIndex to = fstd->dest_coords;
uint dist;
// for train-stations, we are going to aim for the closest station tile
if ((as->user_data[NPF_TYPE] == TRANSPORT_RAIL) && (fstd->station_index != -1))
to = CalcClosestStationTile(fstd->station_index, from);
dist = DistanceManhattan(from, to) * NPF_TILE_LENGTH;
if (dist < ftd->best_bird_dist) {
ftd->best_bird_dist = dist;
ftd->best_trackdir = current->user_data[NPF_TRACKDIR_CHOICE];
}
#ifdef NPF_DEBUG
debug("Calculating H for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), dist);
#endif
return dist;
}
/* Fills AyStarNode.user_data[NPF_TRACKDIRCHOICE] with the chosen direction to
* get here, either getting it from the current choice or from the parent's
* choice */
void NPFFillTrackdirChoice(AyStarNode* current, OpenListNode* parent)
{
if (parent->path.parent == NULL) {
byte trackdir = current->direction;
/* This is a first order decision, so we'd better save the
* direction we chose */
current->user_data[NPF_TRACKDIR_CHOICE] = trackdir;
#ifdef NPF_DEBUG
debug("Saving trackdir: %#x", trackdir);
#endif
} else {
/* We've already made the decision, so just save our parent's
* decision */
current->user_data[NPF_TRACKDIR_CHOICE] = parent->path.node.user_data[NPF_TRACKDIR_CHOICE];
}
}
/* Will return the cost of the tunnel. If it is an entry, it will return the
* cost of that tile. If the tile is an exit, it will return the tunnel length
* including the exit tile. Requires that this is a Tunnel tile */
uint NPFTunnelCost(AyStarNode* current) {
byte exitdir = _trackdir_to_exitdir[current->direction];
TileIndex tile = current->tile;
if ( (uint)(_map5[tile] & 3) == _reverse_dir[exitdir]) {
/* We just popped out if this tunnel, since were
* facing the tunnel exit */
FindLengthOfTunnelResult flotr;
flotr = FindLengthOfTunnel(tile, _reverse_dir[exitdir]);
return flotr.length * NPF_TILE_LENGTH;
//TODO: Penalty for tunnels?
} else {
/* We are entering the tunnel, the enter tile is just a
* straight track */
return NPF_TILE_LENGTH;
}
}
uint NPFSlopeCost(AyStarNode* current) {
TileIndex next = current->tile + TileOffsByDir(_trackdir_to_exitdir[current->direction]);
int x,y;
int8 z1,z2;
x = TileX(current->tile) * 16;
y = TileY(current->tile) * 16;
z1 = GetSlopeZ(x+8, y+8);
x = TileX(next) * 16;
y = TileY(next) * 16;
z2 = GetSlopeZ(x+8, y+8);
if ((z2 - z1) > 1) {
/* Slope up */
return _patches.npf_rail_slope_penalty;
}
return 0;
/* Should we give a bonus for slope down? Probably not, we
* could just substract that bonus from the penalty, because
* there is only one level of steepness... */
}
void NPFMarkTile(TileIndex tile) {
switch(GetTileType(tile)) {
case MP_RAILWAY:
case MP_STREET:
/* DEBUG: mark visited tiles by mowing the grass under them
* ;-) */
_map2[tile] &= ~15;
MarkTileDirtyByTile(tile);
break;
default:
break;
}
}
int32 NPFWaterPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
//TileIndex tile = current->tile;
int32 cost = 0;
byte trackdir = current->direction;
cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
/* TODO Penalties? */
return cost;
}
/* Determine the cost of this node, for road tracks */
int32 NPFRoadPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
TileIndex tile = current->tile;
int32 cost = 0;
/* Determine base length */
switch (GetTileType(tile)) {
case MP_TUNNELBRIDGE:
if ((_map5[tile] & 0xF0)==0) {
cost = NPFTunnelCost(current);
break;
}
/* Fall through if above if is false, it is a bridge
* then. We treat that as ordinary rail */
case MP_STREET:
cost = NPF_TILE_LENGTH;
break;
default:
break;
}
/* Determine extra costs */
/* Check for slope */
cost += NPFSlopeCost(current);
/* Check for turns */
//TODO
#ifdef NPF_MARKROUTE
NPFMarkTile(tile);
#endif
#ifdef NPF_DEBUG
debug("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
#endif
return cost;
}
/* Determine the cost of this node, for railway tracks */
int32 NPFRailPathCost(AyStar* as, AyStarNode* current, OpenListNode* parent) {
TileIndex tile = current->tile;
byte trackdir = current->direction;
int32 cost = 0;
OpenListNode new_node;
/* Determine base length */
switch (GetTileType(tile)) {
case MP_TUNNELBRIDGE:
if ((_map5[tile] & 0xF0)==0) {
cost = NPFTunnelCost(current);
break;
}
/* Fall through if above if is false, it is a bridge
* then. We treat that as ordinary rail */
case MP_RAILWAY:
cost = _trackdir_length[trackdir]; /* Should be different for diagonal tracks */
break;
case MP_STREET: /* Railway crossing */
cost = NPF_TILE_LENGTH;
break;
case MP_STATION:
/* We give a station tile a penalty. Logically we would only
* want to give station tiles that are not our destination
* this penalty. This would discourage trains to drive through
* busy stations. But, we can just give any station tile a
* penalty, because every possible route will get this penalty
* exactly once, on its end tile (if it's a station) and it
* will therefore not make a difference. */
cost = NPF_TILE_LENGTH + _patches.npf_rail_station_penalty;
break;
default:
break;
}
/* Determine extra costs */
/* Check for signals */
if (IsTileType(tile, MP_RAILWAY) && (_map5[tile] & 0xC0) == 0x40 && (_map3_lo[tile] & _signal_along_trackdir[trackdir]) != 0) {
/* Ordinary track with signals */
if ((_map2[tile] & _signal_along_trackdir[trackdir]) == 0) {
/* Signal facing us is red */
if (!NPFGetFlag(current, NPF_FLAG_SEEN_SIGNAL)) {
/* Penalize the first signal we
* encounter, if it is red */
cost += _patches.npf_rail_firstred_penalty;
}
/* Record the state of this signal */
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, true);
} else {
/* Record the state of this signal */
NPFSetFlag(current, NPF_FLAG_LAST_SIGNAL_RED, false);
}
NPFSetFlag(current, NPF_FLAG_SEEN_SIGNAL, true);
}
/* Penalise the tile if it is a target tile and the last signal was
* red */
new_node.path.node = *current;
if (as->EndNodeCheck(as, &new_node)==AYSTAR_FOUND_END_NODE && NPFGetFlag(current, NPF_FLAG_LAST_SIGNAL_RED))
cost += _patches.npf_rail_lastred_penalty;
/* Check for slope */
cost += NPFSlopeCost(current);
/* Check for turns */
if (current->direction != parent->path.node.direction)
cost += _patches.npf_rail_curve_penalty;
//TODO, with realistic acceleration, also the amount of straight track between
// curves should be taken into account, as this affects the speed limit.
/* Check for occupied track */
//TODO
#ifdef NPF_MARKROUTE
NPFMarkTile(tile);
#endif
#ifdef NPF_DEBUG
debug("Calculating G for: (%d, %d). Result: %d", TileX(current->tile), TileY(current->tile), cost);
#endif
return cost;
}
/* Will find any depot */
int32 NPFFindDepot(AyStar* as, OpenListNode *current) {
TileIndex tile = current->path.node.tile;
if (IsTileDepotType(tile, as->user_data[NPF_TYPE]))
return AYSTAR_FOUND_END_NODE;
else
return AYSTAR_DONE;
}
/* Will find a station identified using the NPFFindStationOrTileData */
int32 NPFFindStationOrTile(AyStar* as, OpenListNode *current) {
NPFFindStationOrTileData* fstd = (NPFFindStationOrTileData*)as->user_target;
AyStarNode *node = ¤t->path.node;
TileIndex tile = node->tile;
/* See if we checked this before */
if (NPFGetFlag(node, NPF_FLAG_TARGET_CHECKED))
return NPFGetFlag(node, NPF_FLAG_IS_TARGET);
/* We're gonna check this now and store the result, let's mark that */
NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, true);
/* If GetNeighbours said we could get here, we assume the station type
* is correct */
if (
(fstd->station_index == -1 && tile == fstd->dest_coords) || /* We've found the tile, or */
(IsTileType(tile, MP_STATION) && _map2[tile] == fstd->station_index) /* the station */
) {
NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, true);
return AYSTAR_FOUND_END_NODE;
} else {
NPFSetFlag(node, NPF_FLAG_TARGET_CHECKED, false);
return AYSTAR_DONE;
}
}
/* To be called when current contains the (shortest route to) the target node.
* Will fill the contents of the NPFFoundTargetData using
* AyStarNode[NPF_TRACKDIR_CHOICE].
*/
void NPFSaveTargetData(AyStar* as, OpenListNode* current) {
NPFFoundTargetData* ftd = (NPFFoundTargetData*)as->user_path;
ftd->best_trackdir = current->path.node.user_data[NPF_TRACKDIR_CHOICE];
ftd->best_path_dist = current->g;
ftd->best_bird_dist = 0;
ftd->node = current->path.node;
}
/* Will just follow the results of GetTileTrackStatus concerning where we can
* go and where not. Uses AyStar.user_data[NPF_TYPE] as the transport type and
* an argument to GetTileTrackStatus. Will skip tunnels, meaning that the
* entry and exit are neighbours. Will fill
* AyStarNode.user_data[NPF_TRACKDIR_CHOICE] with an appropriate value, and
* copy AyStarNode.user_data[NPF_NODE_FLAGS] from the parent */
void NPFFollowTrack(AyStar* aystar, OpenListNode* current) {
byte src_trackdir = current->path.node.direction;
TileIndex src_tile = current->path.node.tile;
byte src_exitdir = _trackdir_to_exitdir[src_trackdir];
FindLengthOfTunnelResult flotr;
TileIndex dst_tile;
int i = 0;
uint trackdirs, ts;
TransportType type = aystar->user_data[NPF_TYPE];
/* Initialize to 0, so we can jump out (return) somewhere an have no neighbours */
aystar->num_neighbours = 0;
#ifdef NPF_DEBUG
debug("Expanding: (%d, %d, %d) [%d]", TileX(src_tile), TileY(src_tile), src_trackdir, src_tile);
#endif
/* Find dest tile */
if (IsTileType(src_tile, MP_TUNNELBRIDGE) && (_map5[src_tile] & 0xF0)==0 && (_map5[src_tile] & 3) == src_exitdir) {
/* This is a tunnel. We know this tunnel is our type,
* otherwise we wouldn't have got here. It is also facing us,
* so we should skip it's body */
flotr = FindLengthOfTunnel(src_tile, src_exitdir);
dst_tile = flotr.tile;
} else {
if (IsTileDepotType(src_tile, type)){
/* This is a road station or a train or road depot. We can enter and exit
* those from one side only. Trackdirs don't support that (yet), so we'll
* do this here. */
byte exitdir;
/* Find out the exit direction first */
if (IsRoadStationTile(src_tile))
exitdir = GetRoadStationDir(src_tile);
else /* Train or road depot. Direction is stored the same for both, in map5 */
exitdir = _map5[src_tile] & 3; /* Extract the direction from the map */
/* Let's see if were headed the right way */
if (src_trackdir != _dir_to_diag_trackdir[exitdir])
/* Not going out of the station/depot through the exit, but the back. No
* neighbours then. */
return;
}
/* This a normal tile, a bridge, a tunnel exit, etc. */
dst_tile = AddTileIndexDiffCWrap(src_tile, TileIndexDiffCByDir(_trackdir_to_exitdir[src_trackdir]));
if (dst_tile == INVALID_TILE) {
/* We reached the border of the map */
/* TODO Nicer control flow for this */
return;
}
}
// TODO: check correct rail type (mono, maglev, etc)
/* Check the owner of the tile */
if (
IsTileType(dst_tile, MP_RAILWAY) /* Rail tile */
|| IsTileDepotType(dst_tile, TRANSPORT_ROAD) /* Road depot tile */
|| IsTileType(dst_tile, MP_STATION) /* Station tile */
|| IsTileDepotType(dst_tile, TRANSPORT_WATER) /* Water depot tile */
) /* TODO: Crossings, tunnels and bridges are "public" now */
/* The above cases are "private" tiles, we need to check the owner */
if (!IsTileOwner(dst_tile, aystar->user_data[NPF_OWNER]))
return;
/* Determine available tracks */
if (type == TRANSPORT_ROAD && (IsRoadStationTile(dst_tile) || IsTileDepotType(dst_tile, TRANSPORT_ROAD))){
/* Road stations and depots return 0 on GTTS, so we have to do this by hand... */
byte exitdir;
if (IsRoadStationTile(dst_tile))
exitdir = GetRoadStationDir(dst_tile);
else /* Road depot */
/* Find the trackdirs that are available for a depot with this orientation. They are in both directions */
exitdir = _map5[dst_tile] & 3; /* Extract the direction from the map */
ts = (1 << _dir_to_diag_trackdir[exitdir])
| (1 << _dir_to_diag_trackdir[_reverse_dir[exitdir]]);
} else {
ts = GetTileTrackStatus(dst_tile, type);
}
trackdirs = ts & 0x3F3F; /* Filter out signal status and the unused bits */
#ifdef NPF_DEBUG
debug("Next node: (%d, %d) [%d], possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), dst_tile, trackdirs);
#endif
/* Select only trackdirs we can reach from our current trackdir */
trackdirs &= _trackdir_reaches_trackdirs[src_trackdir];
if (_patches.forbid_90_deg && (type == TRANSPORT_RAIL || type == TRANSPORT_WATER)) /* Filter out trackdirs that would make 90 deg turns for trains */
trackdirs &= ~_trackdir_crosses_trackdirs[src_trackdir];
#ifdef NPF_DEBUG
debug("After filtering: (%d, %d), possible trackdirs: %#x", TileX(dst_tile), TileY(dst_tile), trackdirs);
#endif
/* Enumerate possible track */
while (trackdirs != 0) {
byte dst_trackdir;
dst_trackdir = FindFirstBit2x64(trackdirs);
trackdirs = KillFirstBit2x64(trackdirs);
#ifdef NPF_DEBUG
debug("Expanded into trackdir: %d, remaining trackdirs: %#x", dst_trackdir, trackdirs);
#endif
/* Check for oneway signal against us */
if (IsTileType(dst_tile, MP_RAILWAY) && (_map5[dst_tile]&0xC0) == 0x40) {
// the tile has a signal
byte signal_present = _map3_lo[dst_tile];
if (!(signal_present & _signal_along_trackdir[dst_trackdir])) {
// if one way signal not pointing towards us, stop going in this direction.
if (signal_present & _signal_against_trackdir[dst_trackdir])
break;
}
}
{
/* We've found ourselves a neighbour :-) */
AyStarNode* neighbour = &aystar->neighbours[i];
neighbour->tile = dst_tile;
neighbour->direction = dst_trackdir;
/* Save user data */
neighbour->user_data[NPF_NODE_FLAGS] = current->path.node.user_data[NPF_NODE_FLAGS];
NPFFillTrackdirChoice(neighbour, current);
}
i++;
}
aystar->num_neighbours = i;
}
/*
* Plan a route to the specified target (which is checked by target_proc),
* from start1 and if not NULL, from start2 as well. The type of transport we
* are checking is in type.
* When we are looking for one specific target (optionally multiple tiles), we
* should use a good heuristic to perform aystar search. When we search for
* multiple targets that are spread around, we should perform a breadth first
* search by specifiying CalcZero as our heuristic.
*/
NPFFoundTargetData NPFRouteInternal(AyStarNode* start1, AyStarNode* start2, NPFFindStationOrTileData* target, AyStar_EndNodeCheck target_proc, AyStar_CalculateH heuristic_proc, TransportType type, Owner owner) {
int r;
NPFFoundTargetData result;
/* Initialize procs */
_npf_aystar.CalculateH = heuristic_proc;
_npf_aystar.EndNodeCheck = target_proc;
_npf_aystar.FoundEndNode = NPFSaveTargetData;
_npf_aystar.GetNeighbours = NPFFollowTrack;
if (type == TRANSPORT_RAIL)
_npf_aystar.CalculateG = NPFRailPathCost;
else if (type == TRANSPORT_ROAD)
_npf_aystar.CalculateG = NPFRoadPathCost;
else if (type == TRANSPORT_WATER)
_npf_aystar.CalculateG = NPFWaterPathCost;
else
assert(0);
/* Initialize Start Node(s) */
start1->user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start1->user_data[NPF_NODE_FLAGS] = 0;
_npf_aystar.addstart(&_npf_aystar, start1);
if (start2) {
start2->user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start2->user_data[NPF_NODE_FLAGS] = 0;
NPFSetFlag(start2, NPF_FLAG_REVERSE, true);
_npf_aystar.addstart(&_npf_aystar, start2);
}
/* Initialize result */
result.best_bird_dist = (uint)-1;
result.best_path_dist = (uint)-1;
result.best_trackdir = 0xff;
_npf_aystar.user_path = &result;
/* Initialize target */
_npf_aystar.user_target = target;
/* Initialize user_data */
_npf_aystar.user_data[NPF_TYPE] = type;
_npf_aystar.user_data[NPF_OWNER] = owner;
/* GO! */
r = AyStarMain_Main(&_npf_aystar);
assert(r != AYSTAR_STILL_BUSY);
if (result.best_bird_dist != 0) {
if (target) {
DEBUG(misc, 1) ("NPF: Could not find route to 0x%x from 0x%x.", target->dest_coords, start1->tile);
} else {
/* Assumption: target == NULL, so we are looking for a depot */
DEBUG(misc, 1) ("NPF: Could not find route to a depot from 0x%x.", start1->tile);
}
}
return result;
}
NPFFoundTargetData NPFRouteToStationOrTileTwoWay(TileIndex tile1, byte trackdir1, TileIndex tile2, byte trackdir2, NPFFindStationOrTileData* target, TransportType type, Owner owner) {
AyStarNode start1;
AyStarNode start2;
start1.tile = tile1;
start2.tile = tile2;
start1.direction = trackdir1;
start2.direction = trackdir2;
return NPFRouteInternal(&start1, &start2, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner);
}
NPFFoundTargetData NPFRouteToStationOrTile(TileIndex tile, byte trackdir, NPFFindStationOrTileData* target, TransportType type, Owner owner) {
AyStarNode start;
assert(tile != 0);
start.tile = tile;
start.direction = trackdir;
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
return NPFRouteInternal(&start, NULL, target, NPFFindStationOrTile, NPFCalcStationOrTileHeuristic, type, owner);
}
NPFFoundTargetData NPFRouteToDepotBreadthFirst(TileIndex tile, byte trackdir, TransportType type, Owner owner) {
AyStarNode start;
start.tile = tile;
start.direction = trackdir;
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
/* perform a breadth first search. Target is NULL,
* since we are just looking for any depot...*/
return NPFRouteInternal(&start, NULL, NULL, NPFFindDepot, NPFCalcZero, type, owner);
}
NPFFoundTargetData NPFRouteToDepotTrialError(TileIndex tile, byte trackdir, TransportType type, Owner owner) {
/* Okay, what we're gonna do. First, we look at all depots, calculate
* the manhatten distance to get to each depot. We then sort them by
* distance. We start by trying to plan a route to the closest, then
* the next closest, etc. We stop when the best route we have found so
* far, is shorter than the manhattan distance. This will obviously
* always find the closest depot. It will probably be most efficient
* for ships, since the heuristic will not be to far off then. I hope.
*/
Queue depots;
int r;
NPFFoundTargetData best_result;
NPFFoundTargetData result;
NPFFindStationOrTileData target;
AyStarNode start;
Depot* current;
Depot *depot;
init_InsSort(&depots);
/* Okay, let's find all depots that we can use first */
FOR_ALL_DEPOTS(depot) {
/* Check if this is really a valid depot, it is of the needed type and
* owner */
if (IsValidDepot(depot) && IsTileDepotType(depot->xy, type) && IsTileOwner(depot->xy, owner))
/* If so, let's add it to the queue, sorted by distance */
depots.push(&depots, depot, DistanceManhattan(tile, depot->xy));
}
/* Now, let's initialise the aystar */
/* Initialize procs */
_npf_aystar.CalculateH = NPFCalcStationOrTileHeuristic;
_npf_aystar.EndNodeCheck = NPFFindStationOrTile;
_npf_aystar.FoundEndNode = NPFSaveTargetData;
_npf_aystar.GetNeighbours = NPFFollowTrack;
if (type == TRANSPORT_RAIL)
_npf_aystar.CalculateG = NPFRailPathCost;
else if (type == TRANSPORT_ROAD)
_npf_aystar.CalculateG = NPFRoadPathCost;
else if (type == TRANSPORT_WATER)
_npf_aystar.CalculateG = NPFWaterPathCost;
else
assert(0);
/* Initialize target */
target.station_index = -1; /* We will initialize dest_coords inside the loop below */
_npf_aystar.user_target = ⌖
/* Initialize user_data */
_npf_aystar.user_data[NPF_TYPE] = type;
_npf_aystar.user_data[NPF_OWNER] = owner;
/* Initialize Start Node */
start.tile = tile;
start.direction = trackdir; /* We will initialize user_data inside the loop below */
/* Initialize Result */
_npf_aystar.user_path = &result;
best_result.best_path_dist = (uint)-1;
best_result.best_bird_dist = (uint)-1;
/* Just iterate the depots in order of increasing distance */
while ((current = depots.pop(&depots))) {
/* Check to see if we already have a path shorter than this
* depot's manhattan distance. HACK: We call DistanceManhattan
* again, we should probably modify the queue to give us that
* value... */
if ( DistanceManhattan(tile, current->xy * NPF_TILE_LENGTH) > best_result.best_path_dist)
break;
/* Initialize Start Node */
/* We set this in case the target is also the start tile, we will just
* return a not found then */
start.user_data[NPF_TRACKDIR_CHOICE] = 0xff;
start.user_data[NPF_NODE_FLAGS] = 0;
_npf_aystar.addstart(&_npf_aystar, &start);
/* Initialize result */
result.best_bird_dist = (uint)-1;
result.best_path_dist = (uint)-1;
result.best_trackdir = 0xff;
/* Initialize target */
target.dest_coords = current->xy;
/* GO! */
r = AyStarMain_Main(&_npf_aystar);
assert(r != AYSTAR_STILL_BUSY);
/* This depot is closer */
if (result.best_path_dist < best_result.best_path_dist)
best_result = result;
}
if (result.best_bird_dist != 0) {
DEBUG(misc, 1) ("NPF: Could not find route to any depot from 0x%x.", tile);
}
return best_result;
}
void InitializeNPF(void)
{
init_AyStar(&_npf_aystar, NTPHash, 1024);
_npf_aystar.loops_per_tick = 0;
_npf_aystar.max_path_cost = 0;
_npf_aystar.max_search_nodes = 0;
#if 0
init_AyStar(&_train_find_station, NTPHash, 1024);
init_AyStar(&_train_find_depot, NTPHash, 1024);
init_AyStar(&_road_find_station, NTPHash, 1024);
init_AyStar(&_road_find_depot, NTPHash, 1024);
_train_find_station.loops_per_tick = 0;
_train_find_depot.loops_per_tick = 0;
_road_find_station.loops_per_tick = 0;
_road_find_depot.loops_per_tick = 0;
_train_find_station.max_path_cost = 0;
_train_find_depot.max_path_cost = 0;
_road_find_station.max_path_cost = 0;
_road_find_depot.max_path_cost = 0;
_train_find_station.max_search_nodes = 0;
_train_find_depot.max_search_nodes = 0;
_road_find_station.max_search_nodes = 0;
_road_find_depot.max_search_nodes = 0;
_train_find_station.CalculateG = NPFRailPathCost;
_train_find_depot.CalculateG = NPFRailPathCost;
_road_find_station.CalculateG = NPFRoadPathCost;
_road_find_depot.CalculateG = NPFRoadPathCost;
_train_find_station.CalculateH = NPFCalcStationHeuristic;
_train_find_depot.CalculateH = NPFCalcStationHeuristic;
_road_find_station.CalculateH = NPFCalcStationHeuristic;
_road_find_depot.CalculateH = NPFCalcStationHeuristic;
_train_find_station.EndNodeCheck = NPFFindStationOrTile;
_train_find_depot.EndNodeCheck = NPFFindStationOrTile;
_road_find_station.EndNodeCheck = NPFFindStationOrTile;
_road_find_depot.EndNodeCheck = NPFFindStationOrTile;
_train_find_station.FoundEndNode = NPFSaveTargetData;
_train_find_depot.FoundEndNode = NPFSaveTargetData;
_road_find_station.FoundEndNode = NPFSaveTargetData;
_road_find_depot.FoundEndNode = NPFSaveTargetData;
_train_find_station.GetNeighbours = NPFFollowTrack;
_train_find_depot.GetNeighbours = NPFFollowTrack;
_road_find_station.GetNeighbours = NPFFollowTrack;
_road_find_depot.GetNeighbours = NPFFollowTrack;
#endif
}
void NPFFillWithOrderData(NPFFindStationOrTileData* fstd, Vehicle* v) {
/* Ships don't really reach their stations, but the tile in front. So don't
* save the station id for ships. For roadvehs we don't store it either,
* because multistop depends on vehicles actually reaching the exact
* dest_tile, not just any stop of that station.
* So only for train orders to stations we fill fstd->station_index, for all
* others only dest_coords */
if ((v->current_order.type) == OT_GOTO_STATION && v->type == VEH_Train) {
fstd->station_index = v->current_order.station;
/* Let's take the closest tile of the station as our target for trains */
fstd->dest_coords = CalcClosestStationTile(v->current_order.station, v->tile);
} else {
fstd->dest_coords = v->dest_tile;
fstd->station_index = -1;
}
}