yapf/blob.hpp
author KUDr
Sat, 30 Dec 2006 18:25:01 +0000
branchcustombridgeheads
changeset 5609 ec38986d2c8e
parent 5157 4ffb95a16b96
child 5616 0570ae953222
permissions -rw-r--r--
(svn r7655) [cbh] - Fix: [YAPF] another assert (on opposite cbh when it contained choice). Now it is possible to reach choice when exiting wormhole. So the wormhole cost must be taken into consideration when starting new YAPF node.
/* $Id$ */

#ifndef  BLOB_HPP
#define  BLOB_HPP

/** Type-safe version of memcpy().
 * @param d destination buffer
 * @param s source buffer
 * @param num_items number of items to be copied (!not number of bytes!) */
template <class Titem_>
FORCEINLINE void MemCpyT(Titem_* d, const Titem_* s, int num_items = 1)
{
	memcpy(d, s, num_items * sizeof(Titem_));
}


/** Base class for simple binary blobs.
 *  Item is byte.
 *  The word 'simple' means:
 *    - no configurable allocator type (always made from heap)
 *    - no smart deallocation - deallocation must be called from the same
 *        module (DLL) where the blob was allocated
 *    - no configurable allocation policy (how big blocks should be allocated)
 *    - no extra ownership policy (i.e. 'copy on write') when blob is copied
 *    - no thread synchronization at all
 *
 *  Internal member layout:
 *  1. The only class member is pointer to the first item (see union ptr_u).
 *  2. Allocated block contains the blob header (see CHdr) followed by the raw byte data.
 *     Always, when it allocates memory the allocated size is:
 *                                                      sizeof(CHdr) + <data capacity>
 *  3. Two 'virtual' members (m_size and m_max_size) are stored in the CHdr at beginning
 *     of the alloated block.
 *  4. The pointer (in ptr_u) points behind the header (to the first data byte).
 *     When memory block is allocated, the sizeof(CHdr) it added to it.
 *  5. Benefits of this layout:
 *     - items are accessed in the simplest possible way - just dereferencing the pointer,
 *       which is good for performance (assuming that data are accessed most often).
 *     - sizeof(blob) is the same as the size of any other pointer
 *  6. Drawbacks of this layout:
 *     - the fact, that pointer to the alocated block is adjusted by sizeof(CHdr) before
 *       it is stored can lead to several confusions:
 *         - it is not common pattern so the implementation code is bit harder to read
 *         - valgrind can generate warning that allocated block is lost (not accessible)
 * */
class CBlobBaseSimple {
protected:
	/** header of the allocated memory block */
	struct CHdr {
		int    m_size;      ///< actual blob size in bytes
		int    m_max_size;  ///< maximum (allocated) size in bytes
	};

	/** type used as class member */
	union {
		int8   *m_pData;    ///< pointer to the first byte of data
		CHdr   *m_pHdr_1;   ///< pointer just after the CHdr holding m_size and m_max_size
	} ptr_u;

public:
	static const int Ttail_reserve = 4; ///< four extra bytes will be always allocated and zeroed at the end

	/** default constructor - initializes empty blob */
	FORCEINLINE CBlobBaseSimple() { InitEmpty(); }
	/** copy constructor */
	FORCEINLINE CBlobBaseSimple(const CBlobBaseSimple& src)
	{
		InitEmpty();
		AppendRaw(src);
	}
	/** destructor */
	FORCEINLINE ~CBlobBaseSimple() { Free(); }
protected:
	/** initialize the empty blob by setting the ptr_u.m_pHdr_1 pointer to the static CHdr with
	 *  both m_size and m_max_size containing zero */
	FORCEINLINE void InitEmpty() { static CHdr hdrEmpty[] = {{0, 0}, {0, 0}}; ptr_u.m_pHdr_1 = &hdrEmpty[1]; }
	/** initialize blob by attaching it to the given header followed by data */
	FORCEINLINE void Init(CHdr* hdr) { ptr_u.m_pHdr_1 = &hdr[1]; }
	/** blob header accessor - use it rather than using the pointer arithmetics directly - non-const version */
	FORCEINLINE CHdr& Hdr() { return ptr_u.m_pHdr_1[-1]; }
	/** blob header accessor - use it rather than using the pointer arithmetics directly - const version */
	FORCEINLINE const CHdr& Hdr() const { return ptr_u.m_pHdr_1[-1]; }
	/** return reference to the actual blob size - used when the size needs to be modified */
	FORCEINLINE int& RawSizeRef() { return Hdr().m_size; };

public:
	/** return true if blob doesn't contain valid data */
	FORCEINLINE bool IsEmpty() const { return RawSize() == 0; }
	/** return the number of valid data bytes in the blob */
	FORCEINLINE int RawSize() const { return Hdr().m_size; };
	/** return the current blob capacity in bytes */
	FORCEINLINE int MaxRawSize() const { return Hdr().m_max_size; };
	/** return pointer to the first byte of data - non-const version */
	FORCEINLINE int8* RawData() { return ptr_u.m_pData; }
	/** return pointer to the first byte of data - const version */
	FORCEINLINE const int8* RawData() const { return ptr_u.m_pData; }
#if 0 // reenable when needed
	/** return the 32 bit CRC of valid data in the blob */
	FORCEINLINE uint32 Crc32() const {return CCrc32::Calc(RawData(), RawSize());}
#endif //0
	/** invalidate blob's data - doesn't free buffer */
	FORCEINLINE void Clear() { RawSizeRef() = 0; }
	/** free the blob's memory */
	FORCEINLINE void Free() { if (MaxRawSize() > 0) {RawFree(&Hdr()); InitEmpty();} }
	/** copy data from another blob - replaces any existing blob's data */
	FORCEINLINE void CopyFrom(const CBlobBaseSimple& src) { Clear(); AppendRaw(src); }
	/** overtake ownership of data buffer from the source blob - source blob will become empty */
	FORCEINLINE void MoveFrom(CBlobBaseSimple& src) { Free(); ptr_u.m_pData = src.ptr_u.m_pData; src.InitEmpty(); }
	/** swap buffers (with data) between two blobs (this and source blob) */
	FORCEINLINE void Swap(CBlobBaseSimple& src) { int8 *tmp = ptr_u.m_pData; ptr_u.m_pData = src.ptr_u.m_pData; src.ptr_u.m_pData = tmp; }

	/** append new bytes at the end of existing data bytes - reallocates if necessary */
	FORCEINLINE void AppendRaw(int8 *p, int num_bytes)
	{
		assert(p != NULL);
		if (num_bytes > 0) {
			memcpy(GrowRawSize(num_bytes), p, num_bytes);
		} else {
			assert(num_bytes >= 0);
		}
	}

	/** append bytes from given source blob to the end of existing data bytes - reallocates if necessary */
	FORCEINLINE void AppendRaw(const CBlobBaseSimple& src)
	{
		if (!src.IsEmpty())
			memcpy(GrowRawSize(src.RawSize()), src.RawData(), src.RawSize());
	}

	/** Reallocate if there is no free space for num_bytes bytes.
	 *  @return pointer to the new data to be added */
	FORCEINLINE int8* MakeRawFreeSpace(int num_bytes)
	{
		assert(num_bytes >= 0);
		int new_size = RawSize() + num_bytes;
		if (new_size > MaxRawSize()) SmartAlloc(new_size);
		FixTail();
		return ptr_u.m_pData + RawSize();
	}

	/** Increase RawSize() by num_bytes.
	 *  @return pointer to the new data added */
	FORCEINLINE int8* GrowRawSize(int num_bytes)
	{
		int8* pNewData = MakeRawFreeSpace(num_bytes);
		RawSizeRef() += num_bytes;
		return pNewData;
	}

	/** Decrease RawSize() by num_bytes. */
	FORCEINLINE void ReduceRawSize(int num_bytes)
	{
		if (MaxRawSize() > 0 && num_bytes > 0) {
			assert(num_bytes <= RawSize());
			if (num_bytes < RawSize()) RawSizeRef() -= num_bytes;
			else RawSizeRef() = 0;
		}
	}
	/** reallocate blob data if needed */
	void SmartAlloc(int new_size)
	{
		int old_max_size = MaxRawSize();
		if (old_max_size >= new_size) return;
		// calculate minimum block size we need to allocate
		int min_alloc_size = sizeof(CHdr) + new_size + Ttail_reserve;
		// ask allocation policy for some reasonable block size
		int alloc_size = AllocPolicy(min_alloc_size);
		// allocate new block
		CHdr* pNewHdr = RawAlloc(alloc_size);
		// setup header
		pNewHdr->m_size = RawSize();
		pNewHdr->m_max_size = alloc_size - (sizeof(CHdr) + Ttail_reserve);
		// copy existing data
		if (RawSize() > 0)
			memcpy(pNewHdr + 1, ptr_u.m_pData, pNewHdr->m_size);
		// replace our block with new one
		CHdr* pOldHdr = &Hdr();
		Init(pNewHdr);
		if (old_max_size > 0)
			RawFree(pOldHdr);
	}
	/** simple allocation policy - can be optimized later */
	FORCEINLINE static int AllocPolicy(int min_alloc)
	{
		if (min_alloc < (1 << 9)) {
			if (min_alloc < (1 << 5)) return (1 << 5);
			return (min_alloc < (1 << 7)) ? (1 << 7) : (1 << 9);
		}
		if (min_alloc < (1 << 15)) {
			if (min_alloc < (1 << 11)) return (1 << 11);
			return (min_alloc < (1 << 13)) ? (1 << 13) : (1 << 15);
		}
		if (min_alloc < (1 << 20)) {
			if (min_alloc < (1 << 17)) return (1 << 17);
			return (min_alloc < (1 << 19)) ? (1 << 19) : (1 << 20);
		}
		min_alloc = (min_alloc | ((1 << 20) - 1)) + 1;
		return min_alloc;
	}

	/** all allocation should happen here */
	static FORCEINLINE CHdr* RawAlloc(int num_bytes) { return (CHdr*)malloc(num_bytes); }
	/** all deallocations should happen here */
	static FORCEINLINE void RawFree(CHdr* p) { free(p); }
	/** fixing the four bytes at the end of blob data - useful when blob is used to hold string */
	FORCEINLINE void FixTail()
	{
		if (MaxRawSize() > 0) {
			int8 *p = &ptr_u.m_pData[RawSize()];
			for (int i = 0; i < Ttail_reserve; i++) p[i] = 0;
		}
	}
};

/** Blob - simple dynamic Titem_ array. Titem_ (template argument) is a placeholder for any type.
 *  Titem_ can be any integral type, pointer, or structure. Using Blob instead of just plain C array
 *  simplifies the resource management in several ways:
 *  1. When adding new item(s) it automatically grows capacity if needed.
 *  2. When variable of type Blob comes out of scope it automatically frees the data buffer.
 *  3. Takes care about the actual data size (number of used items).
 *  4. Dynamically constructs only used items (as opposite of static array which constructs all items) */
template <class Titem_, class Tbase_ = CBlobBaseSimple>
class CBlobT : public CBlobBaseSimple {
	// make template arguments public:
public:
	typedef Titem_ Titem;
	typedef Tbase_ Tbase;

	static const int Titem_size = sizeof(Titem);

	/** Default constructor - makes new Blob ready to accept any data */
	FORCEINLINE CBlobT() : Tbase() {}
	/** Copy constructor - make new blob to become copy of the original (source) blob */
	FORCEINLINE CBlobT(const Tbase& src) : Tbase(src) {assert((RawSize() % Titem_size) == 0);}
	/** Destructor - ensures that allocated memory (if any) is freed */
	FORCEINLINE ~CBlobT() { Free(); }
	/** Check the validity of item index (only in debug mode) */
	FORCEINLINE void CheckIdx(int idx) { assert(idx >= 0); assert(idx < Size()); }
	/** Return pointer to the first data item - non-const version */
	FORCEINLINE Titem* Data() { return (Titem*)RawData(); }
	/** Return pointer to the first data item - const version */
	FORCEINLINE const Titem* Data() const { return (const Titem*)RawData(); }
	/** Return pointer to the idx-th data item - non-const version */
	FORCEINLINE Titem* Data(int idx) { CheckIdx(idx); return (Data() + idx); }
	/** Return pointer to the idx-th data item - const version */
	FORCEINLINE const Titem* Data(int idx) const { CheckIdx(idx); return (Data() + idx); }
	/** Return number of items in the Blob */
	FORCEINLINE int Size() const { return (RawSize() / Titem_size); }
	/** Free the memory occupied by Blob destroying all items */
	FORCEINLINE void Free()
	{
		assert((RawSize() % Titem_size) == 0);
		int old_size = Size();
		if (old_size > 0) {
			// destroy removed items;
			Titem* pI_last_to_destroy = Data(0);
			for (Titem* pI = Data(old_size - 1); pI >= pI_last_to_destroy; pI--) pI->~Titem_();
		}
		Tbase::Free();
	}
	/** Grow number of data items in Blob by given number - doesn't construct items */
	FORCEINLINE Titem* GrowSizeNC(int num_items) { return (Titem*)GrowRawSize(num_items * Titem_size); }
	/** Grow number of data items in Blob by given number - constructs new items (using Titem_'s default constructor) */
	FORCEINLINE Titem* GrowSizeC(int num_items)
	{
		Titem* pI = GrowSizeNC(num_items);
		for (int i = num_items; i > 0; i--, pI++) new (pI) Titem();
	}
	/** Destroy given number of items and reduce the Blob's data size */
	FORCEINLINE void ReduceSize(int num_items)
	{
		assert((RawSize() % Titem_size) == 0);
		int old_size = Size();
		assert(num_items <= old_size);
		int new_size = (num_items <= old_size) ? (old_size - num_items) : 0;
		// destroy removed items;
		Titem* pI_last_to_destroy = Data(new_size);
		for (Titem* pI = Data(old_size - 1); pI >= pI_last_to_destroy; pI--) pI->~Titem();
		// remove them
		ReduceRawSize(num_items * Titem_size);
	}
	/** Append one data item at the end (calls Titem_'s default constructor) */
	FORCEINLINE Titem* AppendNew()
	{
		Titem& dst = *GrowSizeNC(1); // Grow size by one item
		Titem* pNewItem = new (&dst) Titem(); // construct the new item by calling in-place new operator
		return pNewItem;
	}
	/** Append the copy of given item at the end of Blob (using copy constructor) */
	FORCEINLINE Titem* Append(const Titem& src)
	{
		Titem& dst = *GrowSizeNC(1); // Grow size by one item
		Titem* pNewItem = new (&dst) Titem(src); // construct the new item by calling in-place new operator with copy ctor()
		return pNewItem;
	}
	/** Add given items (ptr + number of items) at the end of blob */
	FORCEINLINE Titem* Append(const Titem* pSrc, int num_items)
	{
		Titem* pDst = GrowSizeNC(num_items);
		Titem* pDstOrg = pDst;
		Titem* pDstEnd = pDst + num_items;
		while (pDst < pDstEnd) new (pDst++) Titem(*(pSrc++));
		return pDstOrg;
	}
	/** Remove item with the given index by replacing it by the last item and reducing the size by one */
	FORCEINLINE void RemoveBySwap(int idx)
	{
		CheckIdx(idx);
		// destroy removed item
		Titem* pRemoved = Data(idx);
		RemoveBySwap(pRemoved);
	}
	/** Remove item given by pointer replacing it by the last item and reducing the size by one */
	FORCEINLINE void RemoveBySwap(Titem* pItem)
	{
		Titem* pLast = Data(Size() - 1);
		assert(pItem >= Data() && pItem <= pLast);
		// move last item to its new place
		if (pItem != pLast) {
			pItem->~Titem_();
			new (pItem) Titem_(*pLast);
		}
		// destroy the last item
		pLast->~Titem_();
		// and reduce the raw blob size
		ReduceRawSize(Titem_size);
	}
	/** Ensures that given number of items can be added to the end of Blob. Returns pointer to the
	 *  first free (unused) item */
	FORCEINLINE Titem* MakeFreeSpace(int num_items) { return (Titem*)MakeRawFreeSpace(num_items * Titem_size); }
};

// simple string implementation
struct CStrA : public CBlobT<char>
{
	typedef CBlobT<char> base;
	CStrA(const char* str = NULL) {Append(str);}
	FORCEINLINE CStrA(const CBlobBaseSimple& src) : base(src) {}
	void Append(const char* str) {if (str != NULL && str[0] != '\0') base::Append(str, (int)strlen(str));}
};

#endif /* BLOB_HPP */