queue.c
author Darkvater
Mon, 31 Jul 2006 11:50:23 +0000
branch0.4
changeset 10065 fc91a7eca19e
parent 9959 984493ab6fff
permissions -rw-r--r--
(svn r5669) - Backport from trunk (r5464, r3641):
Codechange: verify the presence of music files in the gm folder. Slightly altered r5464
to exclude the addition of music.c and left out the extra functionality. While in essence
this is not a true fix, several people have reported a rising CPU usage because Dmusic
kept indefinitely looping the file list. This should solve that.
/* $Id$ */

#include "stdafx.h"
#include "openttd.h"
#include "queue.h"

static void Stack_Clear(Queue* q, bool free_values)
{
	uint i;
	if (free_values)
		for (i=0;i<q->data.stack.size;i++)
			free(q->data.stack.elements[i]);
	q->data.stack.size = 0;
}

static void Stack_Free(Queue* q, bool free_values)
{
	q->clear(q, free_values);
	free(q->data.stack.elements);
	if (q->freeq)
		free(q);
}

static bool Stack_Push(Queue* q, void* item, int priority)
{
	if (q->data.stack.size == q->data.stack.max_size)
		return false;
	q->data.stack.elements[q->data.stack.size++] = item;
	return true;
}

static void* Stack_Pop(Queue* q)
{
	void* result;
	if (q->data.stack.size == 0)
		return NULL;
	result = q->data.stack.elements[--q->data.stack.size];

	return result;
}

static bool Stack_Delete(Queue* q, void* item, int priority)
{
	return false;
}

static Queue* init_stack(Queue* q, uint max_size)
{
	q->push = Stack_Push;
	q->pop = Stack_Pop;
	q->del = Stack_Delete;
	q->clear = Stack_Clear;
	q->free = Stack_Free;
	q->data.stack.max_size = max_size;
	q->data.stack.size = 0;
	q->data.stack.elements = malloc(max_size * sizeof(void*));
	q->freeq = false;
	return q;
}

Queue* new_Stack(uint max_size)
{
	Queue* q = malloc(sizeof(Queue));
	init_stack(q, max_size);
	q->freeq = true;
	return q;
}

/*
 * Fifo
 */

static void Fifo_Clear(Queue* q, bool free_values)
{
	uint head, tail;
	if (free_values) {
		head = q->data.fifo.head;
		tail = q->data.fifo.tail; /* cache for speed */
		while (head != tail) {
			free(q->data.fifo.elements[tail]);
			tail = (tail + 1) % q->data.fifo.max_size;
		}
	}
	q->data.fifo.head = q->data.fifo.tail = 0;
}

static void Fifo_Free(Queue* q, bool free_values)
{
	q->clear(q, free_values);
	free(q->data.fifo.elements);
	if (q->freeq)
		free(q);
}

static bool Fifo_Push(Queue* q, void* item, int priority)
{
	uint next = (q->data.fifo.head + 1) % q->data.fifo.max_size;
	if (next == q->data.fifo.tail)
		return false;
	q->data.fifo.elements[q->data.fifo.head] = item;


	q->data.fifo.head = next;
	return true;
}

static void* Fifo_Pop(Queue* q)
{
	void* result;
	if (q->data.fifo.head == q->data.fifo.tail)
		return NULL;
	result = q->data.fifo.elements[q->data.fifo.tail];


	q->data.fifo.tail = (q->data.fifo.tail + 1) % q->data.fifo.max_size;
	return result;
}

static bool Fifo_Delete(Queue* q, void* item, int priority)
{
	return false;
}

static Queue* init_fifo(Queue* q, uint max_size)
{
	q->push = Fifo_Push;
	q->pop = Fifo_Pop;
	q->del = Fifo_Delete;
	q->clear = Fifo_Clear;
	q->free = Fifo_Free;
	q->data.fifo.max_size = max_size;
	q->data.fifo.head = 0;
	q->data.fifo.tail = 0;
	q->data.fifo.elements = malloc(max_size * sizeof(void*));
	q->freeq = false;
	return q;
}

Queue* new_Fifo(uint max_size)
{
	Queue* q = malloc(sizeof(Queue));
	init_fifo(q, max_size);
	q->freeq = true;
	return q;
}


/*
 * Insertion Sorter
 */

static void InsSort_Clear(Queue* q, bool free_values)
{
	InsSortNode* node = q->data.inssort.first;
	InsSortNode* prev;
	while (node != NULL) {
		if (free_values)
			free(node->item);
		prev = node;
		node = node->next;
		free(prev);

	}
	q->data.inssort.first = NULL;
}

static void InsSort_Free(Queue* q, bool free_values)
{
	q->clear(q, free_values);
	if (q->freeq)
		free(q);
}

static bool InsSort_Push(Queue* q, void* item, int priority)
{
	InsSortNode* newnode = malloc(sizeof(InsSortNode));
	if (newnode == NULL) return false;
	newnode->item = item;
	newnode->priority = priority;
	if (q->data.inssort.first == NULL || q->data.inssort.first->priority >= priority) {
		newnode->next = q->data.inssort.first;
		q->data.inssort.first = newnode;
	} else {
		InsSortNode* node = q->data.inssort.first;
		while( node != NULL ) {
			if (node->next == NULL || node->next->priority >= priority) {
				newnode->next = node->next;
				node->next = newnode;
				break;
			}
			node = node->next;
		}
	}
	return true;
}

static void* InsSort_Pop(Queue* q)
{
	InsSortNode* node = q->data.inssort.first;
	void* result;
	if (node == NULL)
		return NULL;
	result = node->item;
	q->data.inssort.first = q->data.inssort.first->next;
	if (q->data.inssort.first)
		assert(q->data.inssort.first->priority >= node->priority);
	free(node);
	return result;
}

static bool InsSort_Delete(Queue* q, void* item, int priority)
{
	return false;
}

void init_InsSort(Queue* q) {
	q->push = InsSort_Push;
	q->pop = InsSort_Pop;
	q->del = InsSort_Delete;
	q->clear = InsSort_Clear;
	q->free = InsSort_Free;
	q->data.inssort.first = NULL;
	q->freeq = false;
}

Queue* new_InsSort(void)
{
	Queue* q = malloc(sizeof(Queue));
	init_InsSort(q);
	q->freeq = true;
	return q;
}


/*
 * Binary Heap
 * For information, see: http://www.policyalmanac.org/games/binaryHeaps.htm
 */

#define BINARY_HEAP_BLOCKSIZE (1 << BINARY_HEAP_BLOCKSIZE_BITS)
#define BINARY_HEAP_BLOCKSIZE_MASK (BINARY_HEAP_BLOCKSIZE-1)

// To make our life easy, we make the next define
//  Because Binary Heaps works with array from 1 to n,
//  and C with array from 0 to n-1, and we don't like typing
//  q->data.binaryheap.elements[i-1] every time, we use this define.
#define BIN_HEAP_ARR(i) q->data.binaryheap.elements[((i)-1) >> BINARY_HEAP_BLOCKSIZE_BITS][((i)-1) & BINARY_HEAP_BLOCKSIZE_MASK]

static void BinaryHeap_Clear(Queue* q, bool free_values)
{
	/* Free all items if needed and free all but the first blocks of
	 * memory */
	uint i,j;
	for (i=0;i<q->data.binaryheap.blocks;i++) {
		if (q->data.binaryheap.elements[i] == NULL) {
			/* No more allocated blocks */
			break;
		}
		/* For every allocated block */
		if (free_values)
			for (j=0;j<(1<<BINARY_HEAP_BLOCKSIZE_BITS);j++) {
				/* For every element in the block */
				if ((q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS) == i
					&& (q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == j)
					break; /* We're past the last element */
				free(q->data.binaryheap.elements[i][j].item);
			}
		if (i != 0) {
			/* Leave the first block of memory alone */
			free(q->data.binaryheap.elements[i]);
			q->data.binaryheap.elements[i] = NULL;
		}
	}
	q->data.binaryheap.size = 0;
	q->data.binaryheap.blocks = 1;
}

static void BinaryHeap_Free(Queue* q, bool free_values)
{
	uint i;
	q->clear(q, free_values);
	for (i=0;i<q->data.binaryheap.blocks;i++) {
		if (q->data.binaryheap.elements[i] == NULL)
			break;
		free(q->data.binaryheap.elements[i]);
	}
	free(q->data.binaryheap.elements);
	if (q->freeq)
		free(q);
}

static bool BinaryHeap_Push(Queue* q, void* item, int priority)
{
	#ifdef QUEUE_DEBUG
			printf("[BinaryHeap] Pushing an element. There are %d elements left\n", q->data.binaryheap.size);
	#endif
	if (q->data.binaryheap.size == q->data.binaryheap.max_size)
		return false;
	assert(q->data.binaryheap.size < q->data.binaryheap.max_size);

	if (q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] == NULL) {
		/* The currently allocated blocks are full, allocate a new one */
		assert((q->data.binaryheap.size & BINARY_HEAP_BLOCKSIZE_MASK) == 0);
		q->data.binaryheap.elements[q->data.binaryheap.size >> BINARY_HEAP_BLOCKSIZE_BITS] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
		q->data.binaryheap.blocks++;
#ifdef QUEUE_DEBUG
		printf("[BinaryHeap] Increasing size of elements to %d nodes\n",q->data.binaryheap.blocks *  BINARY_HEAP_BLOCKSIZE);
#endif
	}

	// Add the item at the end of the array
	BIN_HEAP_ARR(q->data.binaryheap.size+1).priority = priority;
	BIN_HEAP_ARR(q->data.binaryheap.size+1).item = item;
	q->data.binaryheap.size++;

	// Now we are going to check where it belongs. As long as the parent is
	// bigger, we switch with the parent
	{
		int i, j;
		BinaryHeapNode temp;
		i = q->data.binaryheap.size;
		while (i > 1) {
			// Get the parent of this object (divide by 2)
			j = i / 2;
			// Is the parent bigger then the current, switch them
			if (BIN_HEAP_ARR(i).priority <= BIN_HEAP_ARR(j).priority) {
				temp = BIN_HEAP_ARR(j);
				BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
				BIN_HEAP_ARR(i) = temp;
				i = j;
			} else {
				// It is not, we're done!
				break;
			}
		}
	}

	return true;
}

static bool BinaryHeap_Delete(Queue* q, void* item, int priority)
{
	#ifdef QUEUE_DEBUG
			printf("[BinaryHeap] Deleting an element. There are %d elements left\n", q->data.binaryheap.size);
	#endif
	uint i = 0;
	// First, we try to find the item..
	do {
		if (BIN_HEAP_ARR(i+1).item == item) break;
		i++;
	} while (i < q->data.binaryheap.size);
	// We did not find the item, so we return false
	if (i == q->data.binaryheap.size) return false;

	// Now we put the last item over the current item while decreasing the size of the elements
	q->data.binaryheap.size--;
	BIN_HEAP_ARR(i+1) = BIN_HEAP_ARR(q->data.binaryheap.size+1);

	// Now the only thing we have to do, is resort it..
	// On place i there is the item to be sorted.. let's start there
	{
		uint j;
		BinaryHeapNode temp;
		// Because of the fast that Binary Heap uses array from 1 to n, we need to increase
		//   i with 1
		i++;

		for (;;) {
			j = i;
			// Check if we have 2 childs
			if (2*j+1 <= q->data.binaryheap.size) {
				// Is this child smaller than the parent?
				if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) {i = 2*j; }
				// Yes, we _need_ to use i here, not j, because we want to have the smallest child
				//  This way we get that straight away!
				if (BIN_HEAP_ARR(i).priority >= BIN_HEAP_ARR(2*j+1).priority) { i = 2*j+1; }
			// Do we have one child?
			} else if (2*j <= q->data.binaryheap.size) {
				if (BIN_HEAP_ARR(j).priority >= BIN_HEAP_ARR(2*j).priority) { i = 2*j; }
			}

			// One of our childs is smaller than we are, switch
			if (i != j) {
				temp = BIN_HEAP_ARR(j);
				BIN_HEAP_ARR(j) = BIN_HEAP_ARR(i);
				BIN_HEAP_ARR(i) = temp;
			} else {
				// None of our childs is smaller, so we stay here.. stop :)
				break;
			}
		}
	}

	return true;
}

static void* BinaryHeap_Pop(Queue* q)
{
	#ifdef QUEUE_DEBUG
			printf("[BinaryHeap] Popping an element. There are %d elements left\n", q->data.binaryheap.size);
	#endif
	void* result;
	if (q->data.binaryheap.size == 0)
		return NULL;

	// The best item is always on top, so give that as result
	result = BIN_HEAP_ARR(1).item;
	// And now we should get ride of this item...
	BinaryHeap_Delete(q,BIN_HEAP_ARR(1).item, BIN_HEAP_ARR(1).priority);

	return result;
}

void init_BinaryHeap(Queue* q, uint max_size)
{
	assert(q);
	q->push = BinaryHeap_Push;
	q->pop = BinaryHeap_Pop;
	q->del = BinaryHeap_Delete;
	q->clear = BinaryHeap_Clear;
	q->free = BinaryHeap_Free;
	q->data.binaryheap.max_size = max_size;
	q->data.binaryheap.size = 0;
	// We malloc memory in block of BINARY_HEAP_BLOCKSIZE
	//   It autosizes when it runs out of memory
	q->data.binaryheap.elements = calloc(1, ((max_size - 1) / BINARY_HEAP_BLOCKSIZE*sizeof(BinaryHeapNode)) + 1);
	q->data.binaryheap.elements[0] = malloc(BINARY_HEAP_BLOCKSIZE * sizeof(BinaryHeapNode));
	q->data.binaryheap.blocks = 1;
	q->freeq = false;
#ifdef QUEUE_DEBUG
		printf("[BinaryHeap] Initial size of elements is %d nodes\n",(1024));
#endif
}

Queue* new_BinaryHeap(uint max_size) {
	Queue* q = malloc(sizeof(Queue));
	init_BinaryHeap(q, max_size);
	q->freeq = true;
	return q;
}

// Because we don't want anyone else to bother with our defines
#undef BIN_HEAP_ARR

/*
 * Hash
 */

void init_Hash(Hash* h, Hash_HashProc* hash, uint num_buckets) {
	/* Allocate space for the Hash, the buckets and the bucket flags */
	uint i;
	assert(h);
	#ifdef HASH_DEBUG
	debug("Allocated hash: %p", h);
	#endif
	h->hash = hash;
	h->size = 0;
	h->num_buckets = num_buckets;
	h->buckets = malloc(num_buckets * (sizeof(HashNode) + sizeof(bool)));
	#ifdef HASH_DEBUG
	debug("Buckets = %p", h->buckets);
	#endif
	h->buckets_in_use = (bool*)(h->buckets + num_buckets);
	h->freeh = false;
	for (i=0;i<num_buckets;i++)
		h->buckets_in_use[i] = false;
}

Hash* new_Hash(Hash_HashProc* hash, int num_buckets) {
	Hash* h = malloc(sizeof(Hash));
	init_Hash(h, hash, num_buckets);
	h->freeh = true;
	return h;
}

void delete_Hash(Hash* h, bool free_values) {
	uint i;
	/* Iterate all buckets */
	for (i=0;i<h->num_buckets;i++)
	{
		if (h->buckets_in_use[i]) {
			HashNode* node;
			/* Free the first value */
			if (free_values)
				free(h->buckets[i].value);
			node = h->buckets[i].next;
			while (node != NULL) {
				HashNode* prev = node;
				node = node->next;
				/* Free the value */
				if (free_values)
					free(prev->value);
				/* Free the node */
				free(prev);
			}
		}
	}
	free(h->buckets);
	/* No need to free buckets_in_use, it is always allocated in one
	 * malloc with buckets */
	#ifdef HASH_DEBUG
	debug("Freeing Hash: %p", h);
	#endif
	if (h->freeh)
		free(h);
}

#ifdef HASH_STATS
static void stat_Hash(Hash* h)
{
	uint used_buckets = 0;
	uint max_collision = 0;
	uint max_usage = 0;
	uint usage[200];
	uint i;
	uint collision;
	HashNode* node;

	for (i=0;i<200;i++) usage[i] = 0;
	for (i=0;i<h->num_buckets;i++) {
		collision = 0;
		if (h->buckets_in_use[i]) {
			used_buckets++;
			node = &h->buckets[i];
			while (node != NULL) {
				collision++;
				node = node->next;
			}
			if (collision > max_collision) max_collision = collision;
		}
		if (collision > 199) collision = 199;
		usage[collision]++;
		if (collision >0 && usage[collision] >= max_usage) max_usage = usage[collision];
	}
	printf("---\nHash size: %d\nNodes used: %d\nNon empty buckets: %d\nMax collision: %d\n", h->num_buckets, h->size, used_buckets, max_collision);
	printf("{ ");
	for (i=0;i<=max_collision;i++)
		if (usage[i]) {
			printf("%d:%d ", i, usage[i]);
/*
			if (i>0){
				uint j;
				for (j=0;j<(usage[i] * 160 / 800);j++)
					printf("#");
			}
			printf("\n");
			*/
		}
	printf ("}\n");
}
#endif

void clear_Hash(Hash* h, bool free_values)
{
	uint i;
	HashNode* node;
#ifdef HASH_STATS
	if (h->size > 2000)
		stat_Hash(h);
#endif
	/* Iterate all buckets */
	for (i=0;i<h->num_buckets;i++)
	{
		if (h->buckets_in_use[i]) {
			h->buckets_in_use[i] = false;
			/* Free the first value */
			if (free_values)
				free(h->buckets[i].value);
			node = h->buckets[i].next;
			while (node != NULL) {
				HashNode* prev = node;
				node = node->next;
				if (free_values)
					free(prev->value);
				free(prev);
			}
		}
	}
	h->size = 0;
}

/* Finds the node that that saves this key pair. If it is not
 * found, returns NULL. If it is found, *prev is set to the
 * node before the one found, or if the node found was the first in the bucket
 * to NULL. If it is not found, *prev is set to the last HashNode in the
 * bucket, or NULL if it is empty. prev can also be NULL, in which case it is
 * not used for output.
 */
static HashNode* Hash_FindNode(Hash* h, uint key1, uint key2, HashNode** prev_out)
{
	uint hash = h->hash(key1, key2);
	HashNode* result = NULL;
	#ifdef HASH_DEBUG
	debug("Looking for %u, %u", key1, key2);
	#endif
	/* Check if the bucket is empty */
	if (!h->buckets_in_use[hash]) {
		if (prev_out)
			*prev_out = NULL;
		result = NULL;
	/* Check the first node specially */
	} else if (h->buckets[hash].key1 == key1 && h->buckets[hash].key2 == key2) {
		/* Save the value */
		result = h->buckets + hash;
		if (prev_out)
			*prev_out = NULL;
	#ifdef HASH_DEBUG
		debug("Found in first node: %p", result);
	#endif
	/* Check all other nodes */
	} else {
		HashNode* prev = h->buckets + hash;
		HashNode* node = prev->next;
		while (node != NULL) {
			if (node->key1 == key1 && node->key2 == key2) {
				/* Found it */
				result = node;
	#ifdef HASH_DEBUG
				debug("Found in other node: %p", result);
	#endif
				break;
			}
			prev = node;
			node = node->next;
		}
		if (prev_out)
			*prev_out = prev;
	}
	#ifdef HASH_DEBUG
	if (result == NULL)
		debug("Not found");
	#endif
	return result;
}

void* Hash_Delete(Hash* h, uint key1, uint key2) {
	void* result;
	HashNode* prev; /* Used as output var for below function call */
	HashNode* node = Hash_FindNode(h, key1, key2, &prev);

	if (node == NULL) {
		/* not found */
		result = NULL;
	} else if (prev == NULL) {
		/* It is in the first node, we can't free that one, so we free
		 * the next one instead (if there is any)*/
		/* Save the value */
		result = node->value;
		if (node->next != NULL) {
			HashNode* next = node->next;
			/* Copy the second to the first */
			*node = *next;
			/* Free the second */
		#ifndef NOFREE
			free(next);
		#endif
		} else {
			/* This was the last in this bucket */
			/* Mark it as empty */
			uint hash = h->hash(key1, key2);
			h->buckets_in_use[hash] = false;
		}
	} else {
		/* It is in another node */
		/* Save the value */
		result = node->value;
		/* Link previous and next nodes */
		prev->next = node->next;
		/* Free the node */
		#ifndef NOFREE
		free(node);
		#endif
	}
	if (result != NULL)
		h->size--;
	return result;
}


void* Hash_Set(Hash* h, uint key1, uint key2, void* value) {
	HashNode* prev;
	HashNode* node = Hash_FindNode(h, key1, key2, &prev);
	void* result = NULL;
	if (node != NULL) {
		/* Found it */
		result = node->value;
		node->value = value;
		return result;
	}
	/* It is not yet present, let's add it */
	if (prev == NULL) {
		/* The bucket is still empty */
		uint hash = h->hash(key1, key2);
		h->buckets_in_use[hash] = true;
		node = h->buckets + hash;
	} else {
		/* Add it after prev */
		node = malloc(sizeof(HashNode));
		prev->next = node;
	}
	node->next = NULL;
	node->key1 = key1;
	node->key2 = key2;
	node->value = value;
	h->size++;
	return NULL;
}

void* Hash_Get(Hash* h, uint key1, uint key2) {
	HashNode* node = Hash_FindNode(h, key1, key2, NULL);
	#ifdef HASH_DEBUG
	debug("Found node: %p", node);
	#endif
	if (node == NULL) {
		/* Node not found */
		return NULL;
	} else {
		return node->value;
	}
}

uint Hash_Size(Hash* h) {
    return h->size;
}